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The path integral for the n-dimensional free particle is considered. According to the underlying 
symmetry, the short time propagator is expanded in zonal spherical functions of the Euclidean 
group G = Tn x) SO (n) with respect to the subgroup H = SO (n). The group theoretical 
approach to path integration, including the radial part, is explicitly demonstrated. 

I. INTRODUCTION 

Recently, the present authors I have developed a general 
scheme for path integration on a homogeneous space given 
byagroupquotientG IH,HCG. Fora trivialgroupH = {e} 
the short time propagator has been expanded in group char­
acters of G. In all other cases H #{e} the group expansion 
has led to a decomposition of the short time propagator in 
zonal spherical functions. Up to now this technique has only 
been applied to the generalized polar coordinate path inte­
graIl and to the path integration on spaces with positive and 
negative curvature. 2 The purpose of the present paper is to 
include radial path integrals in this group theoretical ap­
proach. The free particle in n dimensions is considered 
where the Euclidean space En is viewed as the quotient G I H. 
Here G is the n-dimensional Euclidean group, which is a 
semidirect product of the translation group and the rotation 
group in n dimensions, Tn x) SO(n), and H = SO(n). 

This paper is organized as follows. In the next section, 
the n-dimensional Euclidean group and its representations 
are discussed in some detail. The Fourier decomposition of 
functions /(g) of gEG, satisfying /(h -Igh) =/(g) for 
hER, is constructed explicitly. In Sec. III this decomposition 
is applied to expand the short time propagator in zonal 
spherical functions D ~ (g) of G:J H. An integral represen­
tation of the free particle propagator is obtained, leading to 
the well-known result of Feynman.3 

II. THE EUCLIDEAN GROUP IN n DIMENSIONS, 
G= Tn x) SO(n) 

The Euclidean group G = 1" x) SO(n) acts as a trans­
formation group in the Euclidean space En of n dimensions 
via the map 

, g: a~ha + r, gEG, (2.1) 

where h is an n X n matrix representation of the subgroup 
H = SO(n). The parameters of the group element 
g = g(r,h) are the n(n - 1 )/2 Euler angles of h and the n 
coordinates of the translation vector r given (for conven­
ience) in polar coordinates (r,qJI,qJZ, ... ,qJn -I)' The group 
composition law is 

(2.2) 

A general group element may be decomposed into a transla­
tion and a rotation (see Ref. 4, p. 548) 

g(r,h) = g(r,l)g(o,h) = g(o,h)g(h -Ir,l), (2.3) 

where I stands for the n X n unit matrix and 0 is the n-dimen­
sional null vector. Obviously any point r in En may be ob­
tained via a translation of the origin 0, 

g: o~r. (2.4 ) 

Accordingly we may restrictgin (2.4) to the formg(r,l), as 
the origin is invariant under pure rotations g( o,h). More­
over, any function/ (r) defined over En may be viewed as a 
function / (g) on the group manifold of G. Especially if 
/(r) =/(r) depends only on the radial distance r, it is a 
function invariant under rotations g( o,h). The zonal spheri­
cal functions D ~ (g) having this property are given by Bes­
sel functions (see Ref. 4, p. 553) 

D ~ (g) = r(nI2)(2/kr) (n - 2)/2 J(n _ 2)12 (kr), (2.5) 

where r is the radial polar coordinate of the translation vec­
tor r in g(r,h). The basis states of G are usually labeled by k, 
I, and M corresponding to the conserved energy (E = f? k 21 
2m), angular momentum, and its degeneracy, respectively. 

For a translation by r along a fixed axis a, e.g., the unit 
vector in x n -direction, the associate zonal spherical function 
reads (see Ref. 4, p. 554) 

D lo(g(ra,I») 

= i'r ( n/2) [ (21 + n _ 2) r (l + n - 2) ] 112 

l! r(n - 1) 

(
2 )(n-2)/2 

X kr J,+ (n - 2)/2 (kr), 

(2.6) 

where L stands for the (n -I)-tuple L = (1,0, ... ,0), with 
1 = 0,1,2, .... Note that any r may be obtained from ra 
through a pure rotation hESO(n), r = h(ra). (See Ref. 1.) 

As is known, a function/ (g) invariant under a rotation 
g( o,h) may be expanded in zonal spherical functions: 

/(g) = fX> dk F(k)dkD~ (g), 

where 

F(k) = L dg/(g)D~(g). 

(2.7) 

(2.8) 

In the above, dg is the invariant volume element of G given 
by 

dg= drdh, (2.9) 

where dh is the normalized invariant Haar measure of 
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H = so (n), S H dh = 1 and dr is the usual Euclidean mea­
sure. The "dimension" dk is defined byl 

8(k;k') = ( dgD~(g)D~(g). 
k JG (2.10) 

Using the explicit form (2.5) we find 

8(k - k ') = r(!!.-) 2n - l1Tnl2 
d

k 
2 (kk,)(n-2)/2 

xL'" drrJ(n_2)12(kr)J(n_2)/2(k'r). 

(2.11 ) 

Comparison with the closure relation of Bessel's functionS 

("" dr rJ" (kr)J" (k 'r) = 1 8(k _ k') 
Jo k 

(2.12) 

leads to the identification 

dk=k n 1/[2" I1T"12r(n/2)]. (2.13 ) 

For n = 2, dk agrees with Barut and Raczka6 who discuss 
the harmonic analysis of T2 8 SO(2). 

Finally we would like to mention that for fer) 
= f (g)r(n 1)/2(21T)nI2 and F(k) = F(k)k (n 1)/2 the 
transformation (2.7) leads to the Hankel transformation of 
order v = (n - 2)/2: 

f (r) = L'" dk F(k)J" (kr).[kr, 

(2.14 ) 

III. PATH INTEGRATION OVER G 

As an application ofthe above group expansion we con­
sider the Feynman propagator of an n-dimensional free par­
ticle given in the sliced time basis 

N I 

X II drj , 
j=1 

where the short time action is given by 

Sj = (mI2£)(ilrj)2. 

(3.1 ) 

(3.2) 

Here we have adopted the usual notation ilrj = rj - rj _I' 

r Q<o = r 0' r b = r N and an isometric time slicing 
£N == tb - fa = T. 

Let us consider the group element gj = g(rj,l). Obvi­
ously the origin is mapped onto rj via the translation gj' The 
combination, 

gj \gj=g-I(rj pl)g(rj,l)=g(rj-rj_pl), (3.3) 

is just the translation mapping 0 onto ilrj . Therefore the 
short time propagator in (3.1) may be considered as a func­
tion f (gj -=- \ gj) on G which depends only on the parameter 
r = I ilrj I ofthe group element (3.3). Hence the Fourier de­
composition (2.7) may be applied to exp{(iIIl)Sj}, where 
the coefficient (2.8) is given by (z = mI2ill£), 
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F(k) = 21TnI2 (2Ik)(n-2)/2 

X 1"" dr r"/2e zr' J(n 2)12 (kr). (3.4) 

In (3.4) the integration over the subgroup H and the group 
parameters (CPI, ... ,CPn -I) of the translation vectorr has been 
performed. Using the integral formula7 

1"" dxx,,+le-ax'J,,([Jx) 

= [J"(2a) - ,,-I exp{ - [J2/4a}, 

Re a> 0, [J> 0, Re v> - 1, (3.5) 

we find 

F(k) = (1Tlz)nI2 exp{ - k 2/4z}. (3.6) 

To be more explicit we have derived the decomposition 

(~)"/2 exp{ im lilrj 12} 
21Tl1l£ 112£ 

= fO dkexp{ - i~~£} dkD~(gj_\g). (3.7) 

With the aid of the orthogonality relation, 

J drjD~(gj-=-\gj)D~*(gj-lgHI) 
8(k - k ') k _ I 

d
k 

Doo(gj IgHI)' (3.8) 

the path integration can be performed leading to the follow­
ing integral representation of the free particle propagator: 

(3.9) 

= dkexp - I T dkD~(ga-lgb)' 1"" {' 1l
2
k

2 
} 

o 11 2m 

The energy spectrum may be identified to be E k = 112 k 212m. 
In order to obtain the normalized wave functions we make 
use of the group property 

D~(ga-lgb) = ID~o(gb)D~~(ga). (3.10) 
L 

As r=h(ra), it follows from (2.3) that g=g(r,l) 
= g(o,h)g(ra,l)g(o,h -I) and the associate spherical func­

tions 

D ~o(g(o,h)g(ra,l)g( o,h I») = D ~o(g(o,h)g(ra,l») 

decompose into 

D ~o (g) = I D ~L,(g(o,h»)D ~,o(g(ra,l»). (3.11 ) 
L' 

Note that the sum vanishes unless L ' is of the form L ' = 
(1,0, ... ,0) (see Ref. 4, p. 555) and D~L'(g(o,h») reduces 
to the associate spherical functions of SO ( n ) , 
D ~L' (g(o,h») = d ~o (h), given in Ref. 1. Collecting every­
thing, the propagator (3.9) is rewritten as 

K(rb,ra;T) 

X I 'IJ kiM (rb ) 'lJtlM (ra ) 
I,M 

M. SCihm and G. Junker 
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with 

'IIKIM(r) =,jii; D1'0(g(ra,1»)d~0(h) 
= l(k /r"~ 2) 1I2J1+ (n ~ 2)/2 (kr) 

X ~r(n!2)/21TnI2 Y1M (e). (3.13 ) 

In the last step, we have used Eq. (2.6). YIM(e) are the 
hyperspherical harmonics in n dimensions. 1 The integers mj 
of the set M = (m1, ... ,mn ~2) are related by 
l;;;.ml;;;.m2;;;.···;;;.mn~3;;;.lmn~21;;;.O. With Eq. (2.12) the 
normalization 

J dr 'IIkIM(r)'II~'l'M' (r) = 8(k - k ')811'8MM , (3.14) 

is shown immediately. 
Performing the integration in (3.12) by using formula 

#6.6332 of Ref. 7, we obtain 

K(rb,ra;n 

=.!!!....(r r )(2~n)/2eXp{ im (r.. +,.:)} 
ifzT a b 2fzT b a 

r(n/2) * X ~ YIM (eb ) Y 1M (ea ). 7:t 21T"/2 
(3.15 ) 

For n = 3, (3.15) reduces to the result of Peak and Ino­
mata. s 

Finally we would like to mention that the k integration 
can be directly performed in Eq. (3.9) via (3.5), leading to 
the original result of Feynman,3 

K(rb,ra;n = (~)n/2 exp{ im Irb _ ra 12}. 
21TlfzT 2fzT 

(3.16) 

IV. DISCUSSION 

In the present work we have applied the expansion in 
zonal spherical functions, developed in Ref. 1, to the path 
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integration over the Euclidean group in n dimensions. The 
technique has been explicitly demonstrated for the n-dimen­
sional free particle. Our result for the free particle coincides 
with that obtained via the Gaussian path integration, as ex­
pected. However, in the present approach the application of 
group theoretical methods has been extended to include the 
radial path integration. Until now only the angular path in­
tegration over rotation groups had been considered. Now we 
may conclude that the complete path integral treatment can 
be incorporated in the formalism of Ref. 1. Here the Euclid­
ean group has been considered. However, the same tech­
nique may be applied, for example, to the path integration 
over the pseudo-Euclidean group Tn x) SO(n - 1,1) in n 
dimensions. 
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In this paper, it is the intent to apply the Riemann-Hilbert transformation developed by 
Hauser and Ernst [J. Math. Phys. 21, 1126, 1418 (1980)] in providing a new representation of 
the Virasoro group. It is found that the Geroch group that acts on the solution space of the 
Einstein field equations is extended to the semidirect product of the Virasoro and Kac-Moody 
groups; also, the relationship between the infinitesimal transformation given previously [B. Y. 
Hou and W. Li, Lett. Math. Phys. 13,1 (1987); J. Phys. A 20, L897 (1987); W. Li, Phys. 
Lett. A 129, 301 (1988)] and the infinitesimal Riemann-Hilbert transformation is pointed 
out. Finally, it is shown that the well-known Neugebauer-Backlund transformation can be 
derived from the Riemann-Hilbert transformation. 

I. INTRODUCTION 

Several years ago Hauser and Ernst I first pointed out 
that the Riemann-Hilbert transformation is associated with 
the infinite-dimensional loop group: They were able to give 
the explicit action of the Geroch group,2 which is shown to 
be isomorphic to an affine Kac-Moody group,3 in the two­
dimensional Einstein field equations, the Ernst equation. 
The work of Hauser and Ernst developed the result of Kin­
nersley and Chitre,4 who gave an infinite set of generators of 
the Geroch group. The Hauser-Ernst method can also offer 
an effective and powerful technique for generating a new 
solution of the Ernst equation from the known solution. Lat­
er, Veno and Nakamura5 applied the Hauser-Ernst method 
to the principal chiral model and the self-dual Yang-Mills 
fields and established similar representations of the Kac­
Moody groups in these systems. Moreover, Veno and Naka­
mura pointed out the link between the Kac-Moody algebra 
found by Dolan° and the so-called hidden symmetry trans­
formations. 7 Thus far much investigation and application 
has been made toward understanding the Hauser-Ernst 
method as related to the Riemann-Hilbert transformation 
for some integrable systems.8 

In this paper we shall find a way to extend the Hauser­
Ernst method to the more general case. We shall indicate 
that the Riemann-Hilbert transformation for the Hauser­
Ernst approach can be related with the Virasoro group as 
well as the Kac-Moody group and has a richer structure 
than previously expected. The Riemann-Hilbert transfor­
mation gives rise to the construction of the semidirect prod­
uct of the Kac-Moody and Virasoro groups. 

In a series of recent papers,9.IO the present authors have 
succeeded in constructing an infinite set of infinitesimal 
transformations for the Ernst equation. Our transforma-

a' Permanent address: Institute of Modern Physics, Northwest University, 
Xian, China. 

tions are different from those given by Kinnersley and 
Chitre.4 Careful calculation shows that these new transfor­
mations constitute a representation of the Virasoro algebra 
which has no central extension and no highest weight, so 
that the representation is nonunitary. As a result, a new sym­
metry, like the Kac-Moody symmetry, is confirmed to exist 
in the solution space of the Ernst equation and the Geroch 
group is thus extended by the Virasoro and Kac-Moody 
groups. 

We are motivated to find the exponentiation of our in­
finitesimal transformations and give the representation of 
the enlarged Geroch group. The problem can be solved by 
giving an integral equation which will be proved by means of 
the Riemann-Hilbert transformation in Sec. III; it is given 
by 

-l-i F(s)u(s)Fo(v(S»)-1 ds=O, 

21Ti Cu., s(s - t) 
(1.1 ) 

where C represents a circle surrounding the origin and t in 
the complex s plane; u(s) and v(s) are, respectively, a 2X 2 
matrix function and a scalar function of s; and F(s) and 
Fo(s) satisfy the Hauser-Ernst linearization equations. The 
details of the restrictions to the quantities in (1.1) will be 
given in Sec. III. 

We see that if v(s) = s, the integral equation (1.1) is 
identical with that initially given by Hauser and Ernst I and is 
used to provide the representation ofthe Kac-Moody group. 
If u(t) = I (where I is a unit matrix), the successive trans­
form of F(t) for Eq. (1.1) is offered by 

( 1.2) 

We know that according to the representation theory of an 
infinite-dimensional group, I I Eq. (1.2) is the composition 
law of the Virasoro group, for which elements consisting of 
the set of functions v(t) satisfy the conditions given in Sec. 
III. It is apparent that our work generalizes the application 
of the Riemann-Hilbert transformation and presents a new 
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approach for generating solutions of the Ernst equation. 
The structure of this paper is organized as follows. In 

Sec. II we recall the formulation developed by Hauser and 
Ernst l for the Ernst equation which will be used in the fol­
lowing discussions. In Sec. III, we shall describe how to gen­
eralize the Hauser and Ernst approach to the Riemann-Hil­
bert transformation. Then we shall exploit the Riemann­
Hilbert transformation to prove the integral equation ( 1.1 ). 
In Sec. IV, we derive the infinitesimal transformations given 
in (1.1) and identify the infinitesimal Riemann-Hilbert 
transformations with those of the Virasoro algebra. Finally, 
we shall discuss the group structure of the Riemann-Hilbert 
transformation and apply it to rederive some known Back­
lund transformations such as the Neugebauerl2 and Mai­
son-Cosgrove transformations. 13 

II. NOTATIONS AND CONVENTIONS 

In order to describe our objective more clearly, it is help­
ful to introduce a few of the notations and conventions that 
shall often be used in this paper. 

We first start with the metric of the space-time, which 
admits two commuting Killing vectors under the line ele­
ment 

(2.1 ) 

where g ij (1', j = 1,2) and g + _ are functions of x + and de­
fined by 

x+ = ~(X3 + A,x4), x_ = ~(X3 - Ax4 ). (2.2) 

Here we have two cases to be distinguished for the space­
time: If one of the Killing vectors is timelike, i.e., the space­
time possesses the stationary and axially symmetric fields, 
we take the value of A as - i; if both Killing vectors are 
spacelike, i.e., the space-time has the cylindrically symmet­
ric fields or the gravitational plane-wave fields, we take A as 
1. The treatments in the following discussion are very similar 
for these two cases; thus we no longer underline their differ­
ences. 

The reduction of the vacuum Einstein field equations 
leads to 

a+(a-lgO a_g) + a_ (a-lgO a+g) = 0, (2.3) 

where 

a a 
a+=-a ' a_=-a ' 

x+ x 

( 
0 i) 

0= -i 0' 

(2.4) 

and g is the 2 X 2 symmetric real matrix whose elements gij 
are the metric components in the line element (2.1) satisfy-
ing 

det g = (Aa)2. (2.5) 

We will not consider the remainder ofthe vacuum Einstein 
field equations governing the metric component g + _ in this 
paper. 

We then introduce the matrix Ernst potential E, which 
is a 2 X 2 matrix field and may be defined as a solution of 

1199 

2({J + A3a)a+E = (E + Et)O a+E, 

2({J - A3a )a_E = (E + Et)O a_E 
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(2.6) 

such that 

g=!(E+Et) -(JO, 

2{J= tr(EO), 

(2.7) 

(2.8) 

where the dagger stands for the Hermitian conjugation. It is 
not difficult to show that Eq. (2.3) is equivalent to Eqs. 
(2.6). 

According to the definition of the fields a and {J from 
Eq. (2.3), it is apparent that a and {J are solutions of the 
wave equation in two dimensions and have the relation 

a+{J= +A3 a+a, a_{J= -A3 a_a . (2.9) 

By defining 

1J+ ={J+ A 3a, 1J- ={J- A 3a, 

Eq. (2.9) implies that 

a+TJ- = a_TJ+ = O. 

(2.10) 

(2.11 ) 

Following Hauser and Ernst's treatment for the lineari­
zation of Eq. (2.6), we define a set of 2 X 2 matrix functions 
F of x + and x _ and a complex parameter t such that for a 
given E, F(t) = F(x+, x_; t) is any solution of the lineariza­
tion equations 

a+F(t) = [t /(1 - 2tTJ+)] a+E OF(t) , 

a_F(t) = [t /(1 - 2tTJ_)] a_E nF(t). 
(2.12) 

In the sense of Frobenius the integrable condition of Eqs. 
(2.12) has to be identical to that ofEq. (2.6). We know that 
the linearization equations do not define F(t) uniquely; thus 
we need to suppress some subsidiary conditions consistent 
with Eqs. (2.12) such that F(t) is holomorphic in a neigh­
borhood t = 0 and F(t) satisfies 

F(O) = I, 

F(O) = En, 

det F(t) = A -I (t), 

F(t)tOA(t)F(t) = 0., 

where 

and 

F(t) = aF(t) 
at ' 

F(t) t = Hermitian conjugate of F(t *) 

A(t) = [(1-2tTJ+)(1-2t1J_)]1/2, 

ACt) = 1- teE + Et)O. 

(2.13 ) 

(2.14 ) 

(2.15 ) 

(2.16 ) 

(2.17 ) 

(2.18 ) 

[Also, I denotes the 2 X 2 unit matrix and the asterisk de­
notes the complex conjugation. ] 

On the other hand, Eqs. (2.6) can be written in the form 

A(t)[t/(1-2tTJ± )]a±E=ta±E. (2.19) 

We then operate A (t) on the linearization equations (2.12) 
and use Eq. (2.19) to obtain 

A(t)a± F(t) = ta± EnF(t), (2.20) 

which will be used in the following discussion. 
Except for these restrictions on F( t) there still exists the 

general gauge transformation of the function F(t), i.e., for 
given any solution F(t), 

F'(t) = F(t)u(t) (2.21) 

W. Li and B. Hou 1199 



                                                                                                                                    

is a solution of the linearization equations (2.12) also, where 
u (I) is any 2 X 2 matrix function of I only and u (I) is holo­
morphic in a neighborhood t = 0 satisfying 

u(O) = /, 
(2.22) 

u(t)tOu(t) = 0, det u(t) = 1. 

Since we know that the analytic properties of the function 
F( t) play an important role in our discussion we thus hope to 
restrict the gauge to one for which the set of t-plane singular­
ities of the function F(t) is minimized. Hauser and Ernst l

•
14 

proved that for fixed (x+, x_) the function F(t) has t-plane 
singularities at I = 1/27J + and t = 1/27J _ regardless of the 
choice of gauge: For this reason we can always choose the 
gauge such that for fixed (x+, x_) F(t) is a holomorphic 
function of t on the whole t plane except for the points t = 1/ 
27J+ and t = 1/27J_. 

III. PROOF OF THE INTEGRABLE EQUATION 

Before describing the proof of the integrable equation 
( 1.1) given in Sec. I, we would like to briefly recall the for­
mulation of the Riemann-Hilbert transformation, which is 
an essential tool to our discussion. 

First, let us select a circle C surrounding the origin in the 
complex t plane, in which the interior and exterior regions of 
C are, respectively, denoted by C+ and C_. Then there exist 
apairoffunctionsX+(t) andX_(t) ofx+,x_ andaparam­
eter t such that X + (t) and X _ (t) are holomorphic in C + 
and C_, respectively, and both are continuous on C. If a 
given function G(t) on C, called the kernel, is analytic and 
connects X + (t) with X _ (t) by a relation 

X_Ct) =X+(t)G(t) on C, (3.1) 

the solutions X + (t) andX _ (t) to Eq. (3.1) are unique: This 
is the so-called Riemann-Hilbert transformation. It is well 
known that the Riemann-Hilbert transformation can be 
used in connection with the generation of a new solution to 
some nonlinear equations from prior solutions once the ker­
nel G(t) is explicitly given. 

The key to the problem is how to find an explicit expres­
sion of G(t) and solve X + (I) and X _ (t) in the different 
regions. Hauser and Ernst l

•
14 proposed that for a given solu­

tion ~)(t), which is assumed to be holomorphic on the whole 
t plane except at t + = 1/27J + and t _ = 1/27J _ and lying in 
C_, the kernel G(t) can be constructed by the form 

G(t) = Fo(t)u(t)F 0- I (t), (3.2) 

where u (t) is defined as a 2 X 2 matrix function of t, indepen­
dentofx+ andx_, such thatu(t) isholomorphicinC + C_ 
and satisfies the conditions 

u(t)tOu(t) = 0, det u(t) = 1. (3.3 ) 

Then Hauser and Ernst were able to verify that with the aid 
of the solutions X + (t) and X _ (I) to the Riemann-Hilbert 
transformation, with the boundary condition 

(3.4 ) 

one can construct a new solution F(t) to Eqs. (2.12)-(2.17) 
by defining 
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F(t) =X+(t)Fo(t) in C+, 

=X_(t)~)(t)U(t)-1 in C_, 

with the new matrix Ernst potential E: 

E= Eo +X+(O). 

(3.5) 

(3.6) 

Further investigation shows that the Hauser-Ernst ap­
proach to the Riemann-Hilbert transformation establishes a 
simpler representation of the Geroch group, a group whose 
elements consist of the set of 2 X 2 matrix functions u (t) 

subject to the conditions (3.3) and whose composition law 
corresponds to the exact form of the Kac-Moody group. 
However, for our purpose we would like to extend the 
Hauser-Ernst method to the more general cases in which the 
Virasoro group, of which an infinite set of infinitesimal gen­
erators were found to act on the solution space of the Ernst 
field equations, will be described in addition to the Kac­
Moody group. 

Now let us first define a scalar function v(t) such that 
v(t) is independent of x+ and x_ and is holomorphic on 
C + C_ except at infinity, where v(t) tends to linear diver­
gence and such that v (t) is a linear function or has singulari­
ties in C +. We further state the restriction that for fixed x + 

and x _, t + and t _ are single-value solutions to 

(1 - 2v(t)7J+)(1 - 2v(t)7J_) = 0, (3.7) 

which lie in C_; v(t ± ) #0. We introduce the new notations 
7J'+ and 7J'- such that 

t+ = 1/27J'+ = V-I (1/27J+), 

t_ = 1/27J'_ = V-I(1/27J_). 
(3.8) 

From Eq. (2.11), we can easily prove that 7J'+ and 7J'- satis­
fy 

a+ 7J'- = a_7J'+ = o. (3.9) 

In fact, Eqs. (3.8) can be interpreted as the transforms 
of variables between different coordinate systems. Thus we 
define that under the transformations (3.8) the given solu­
tion ~)(t) to Eqs. C2.12)-(2.16) is changed into F~(t), 
which satisfies the linearization equations and correspond­
ing subsidiary conditions by replacing 7J + and 7J _ with 7J'+ 

and 7J'- . Thus we have E ~. 
Hence we prefer to select the kernel G(t) as the form 

G(t) =F~(t)u(t)Fo(v(t»)-1 on C, (3.10) 

where u (t) is the same as given above. Thus in our case the 
Riemann-Hilbert transformation can be written in the form 

X_ = X+ (t)G(t) 

= X + (t)F~ (t)u(t)~)(v(t) )-1 on C, 

with the boundary condition 

X+(O)=/. 

(3.11 ) 

(3.12) 

Similar to Hauser and Ernst, 1,14 we shall exploit X + (t) and 
X _ (t) in order to construct the new function F( t) by 

F(t) = X + (t)Fb (t), in C+, 
(3.13 ) 

=X_(t)~)(V(t»)U-I(t) in C_. 

We shall show that F(t) constructed in Eqs. (3.13) is a 
solution to the following: 
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J+F(t) = [11(1-2171'+ )]J+EOF(t), 

J_F(t) = [11(1 - 2{''1'_ ) ]J_E OF(t) , 

A (t)J+F(t) = J+E OF(t) , 

A (t)J_F(t) = J_E OF(t) , 

F(O) = I, 

F(O) = EO, 

det F(t) = A. ' (t) -I, 

(3.14 ) 

(3.15 ) 

(3.16 ) 

(3.17) 

(3.18 ) 

F(t)tOA(t)F(t) = 0, 

where 

E=Eb +1"+ (0)0, 

A(t) = 1- teE + Et)O, 

A. '(t) = [(1 - 2117'+ ) (1 - 2117'_ )] 1/2. 

( 3.19) 

(3.20) 

(3.21 ) 

(3.22 ) 

To prove Eqs. (3.14), we operate Eqs. (3.13) in differ­
entiation with respect to x+ and obtain 

J+F(t) F(t) -I = J+X+ (t)X+ (t) -I + [11(1 - 2117'+ ) ]X+ (t)J+E bOX:;: l(t) in C+, 

= J+X_ (t)X_(t) -I + {v(t)/[ 1 - 2v(t)17+ nX_ (t)J+Eo 0 X = l(t) in C_. (3.23 ) 

Since X + (t) and X _ (t) are, respectively, holomorphic in 
C+ and C_ and v(t) is holomorphic in C_ we observe Eqs. 
(3.23) such that there exists only one simple singularity at 
t = 11217'+ on the whole t plane. Thus Eqs. (3.23) imply 
that 

(3.24) 

where P and Q independent of t are undetermined. From 
Eqs. (3.12) and (3.23) we obtain 

P=O, Q=J+(1'+(O) +EbO). (3.25) 

If we set 

(3.26 ) 

we obtain Eqs. (3.14) for x+, together with Eq. (3.20); in a 
similar way, we can verify a component of Eqs. (3.14) for 
x_. 

Before we prove Eqs. (3.15), we show 

X:;: 1(t)tOA b(t) X:;: l(t) 

and 

=X = I (t)tOAo(v(t»)X = l(t) 
= OA(t) 

OA(t)J ± X+ (t) X:;: l(t) 

+tX:;:I(t)tOJ± EbOX:;:I(t)t 

= OA(t)J± X_(t) X = l(t) 
+ v(t) X = 1(t)tO J ± Eo 0 X = l(t)t 

= tOJ± E. 

(3.27) 

(3.28) 

The first equality ofEq. (3.27) is derived from Eqs. (2.16) 
and (3.13); it can be expressed as a linear function of 1 since 
v(t) is linear in t as well as A (v(t») when t tends to infinity. 
After determining' the coefficients of this linear function, we 
confirm the second equality of Eq. (3.27). Under similar 
consideration and using Eq. (2.20), it is not difficult to prove 
Eq. (3.28). 

Therefore, it follows from Eqs. (2.16), (3.27), and 
(3.28) that 
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A(t)J±F(t)=A(t)J± Fb(l) 

+A(t)X+(t)J± Fb(t) 

=A(t)J± Fb(t) + OX+(t)O 

X Ab(t) J± Fb(t) 

=A(t)J± Fb(t) + tOX+(t)O 

XJ±EbflFb(t) 

=tflJ± EflX+(t) Fb(t) 

= to J ± E OF( t). 

Thus we complete the proof of Eqs. (3.15). 

(3.29) 

To prove Eq. (3.18) from Eqs. (3.14), we observe that 

det X + (t) = det X _ (t) [A. (u(t»)I A. ' (t) 1· (3.30) 

Since the singularities at t+ and t_ on the rhs ofEq. (3.30) 
can be eliminated, the functions on both sides entice func­
tions for all I. Under the restriction of boundary condition 
(3.l2) we conclude that the function is equal to 1. As a 
consequence of Eqs. (2.15), (3.13), and (3.30), we can ob­
tain Eq. (3.18). 

By using Eqs. (2.16), (3.3), and (3.27), we observe that 

F(t) tflA (t)F(t) 

= u-I(t)t Fb (t)tX+ (t)tflA (t)X+ (t) Fb(t)u-I(t) 

= u-I(t)t Fb(t)tflAb(t) Fb(t)u-I(t) 

= u-I(t)tOu-I(t) 

=0. ( 3.31) 

Now let us prove that the integral equation (1.1) given 
in Sec. I is identical to the representation of the Riemann­
Hilbert transformation, i.e., both are equivalent. To do this, 
we note that since X _ (t) is analytic in C + C _ (including 
t = 00 ), we have 

_1_, X (s) ds=O(tinC+), 
21Ti Jc s(s - t) 

where we used 

_1_ , 1 ds=O (I in C+). 
21Ti Jc s(s - t) 
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In terms of the Cauchy theorem, we substitute Eq. (3.13) 
into Eq. (3.32) to obtain 

1 f 1 -. J F(s)u(s) F o~ l(u(s»)ds = 0 
2m Co., s(s - t) 

subject to the conditions 

F(O) = I, F(O) = Ell. 

(3.34 ) 

(3.35) 

Therefore, we complete our proof of the integral equation 
(1.1). 

Finally, we should prove that E given in Eq. (3.20) sat­
isfies the Ernst field equations and that its trace is equal to {J /; 
we can obtain the new metric g from this new Ernst poten­
tial. 

From Eqs. (3.14) and (3.15), we have 

AU)a ± F(t) = (1 - 2t r(± )a ± F(t). (3.36) 

Differentiating (3.36) twice with respect to t and setting 
t = 0, we see that E satisfies Eqs. (2.6) with r!,± . 

We then take the trace to Eq. (3.20) to obtain 

tr(Ef!) = tr(E~ll) = 2{J' (3.37) 

because 

tr X + (0) = tr(l' + (0) X :;: 1 ( 0 ) ) 

= (det X+ (O»)~ 1 ~(det X+ (0») = 0, (3.38) at 
where we usedX+ (0) =1. Equation (3.37) is equivalent to 

E-ET=2{J'll, (3.39) 

where the superscript T stands for the transport operator. 
According to the definition of g, 

g = 1(E + Et) - {J'll, (3.40) 

it is obvious that g is Hermitian. If we show that g is real, then 
it must be real symmetric. From Eq. (3.39), it follows that 

g=1(E-E T) +!(E T +Et) -{J'll 

=!(ET+E t ) 

=g*. 

It is not difficult to deduce 

det g = (Aa') 2, 

which follows from 

A (t) TllA (t) = det A (t)ll = A. '2(t)ll 

and Eqs. (3.19) and (3.40). 

(3.41 ) 

(3.42 ) 

(3.43 ) 

IV. DERIVATION OF THE INFINITESIMAL SYMMETRY 
TRANSFORMATIONS 

In this section we shall discuss the relationship between 
the Reimann~Hilbert transformation and the infinitesimal 
symmetry transformations given by us previously.9 We pro­
posed9 the infinitesimal symmetry transformations 

of(t) = - [tl(t- t/)]{tF(t)F~l(t) 

- t'F(t')F~ l(T/)}F(t) 

to the linearization equations (2.12) and 

oE= - t'F(t/)F~l(t/)ll 
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(4.1 ) 

(4.2) 

to the Ernst field equation, where for the convenience of 
discussion infinitesimal constants are not written out. We 
showed9 that these transformations constitute the Virasoro 
algebra by expanding the powers of the parameter t /. On the 
other hand, as indicated above, the Riemann-Hilbert trans­
formation for u (t) = I corresponds to the representation of 
the Virasoro group; thus we expect to derive the transforma­
tions (4.1) and (4.2) from 

1 1 F(s) F o~ 1 (u(s») 
- ds=O, 
2rri Co., s(s - t) 

with the boundary conditions 

F(O) = I, F(t) = Ell. 

(4.3 ) 

(4.4 ) 

Let us consider the infinitesimal case for Eq. (4.4). Un­
der the infinitesimal transform, we set 

Ot= u(t) - t (4.5) 

and 

(4.6) 

Substituting Eqs. (4.4) and (4.5) into Eq. (4.3) we have 

~f 1 (~)(s)+o~)(S»)(FO~l(S) 
2m Jco., s(s - t) 

- F o~ l(S)&) ds = 0, ( 4.7) 

where we omitted the higher orders of (&)2. Since Fo(t) is 
holomorphic in C+ and Fo(O) = I, we can integrate 

_1_ f oFo(s)Fo~l(S) ds=oFo(t) Fr;l(t). (4.8) 
2rri Jco., s(s - t) 

Hence Eq. (4.6) can be written in the form 

oFo(t) F o~ 1 (t) = __ 1_ f ~)(s) F o~ I (s) & ds. 

2rri Jc"., s(s - t) 
(4.9) 

For convenience, we no longer write the subscript of ~)(t). 
According to the definition ofu(t) such that u(t) has the 

singularities of or is a linear function in C+, without loss of 
generality, we can select 

Ot=O(k)t= _t~k+l (k;;.O). ( 4.10) 

Substituting Eq. (4.10)into Eq. (4.9), we have 

(4.11 ) 

Equation (4.11) is the infinitesimal Riemann-Hilbert trans­
formation for the Virasoro symmetry.9.10 

To derive Eq. (4.1), we obtain 
00 

of(t) = 2: o(k)F(t)t'\ (4.12) 
k=O 

where t / lies in C +. Since we always have It /1 sl ..; 1, by using 

lOOt /k 

s - t - k~O Sk + I 

we thus obtain 
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of(t) F -I(t) 

1 i 00 (kS - k + I . - - L F(s) F - I (s) ds 
21Ti Co., k = 0 s(s - t) 

= __ 1_ f s F(s) F-I(s) ds 
21Ti Jco., (s - t) (s - t') 

= - _t_{tF(t)F-l(t) - t 'F(t')F- I (t')}. (4.14) 
t - t' 

Equation (4.14) implies Eq. (4.2) as a result ofEq. (4.3). 
Moreover, we need to give the transform of 17 ± under 

the infinitesimal Riemann-Hilbert transformation. In terms 
ofEqs. (3.8) and (4.10), the transform yields 

O(kl'YI± ' ., = 17 ± - 17 ± 

= 1/2v - 1 (t ± ) - 1/2t ± 

= (l/2t 2±) O(kl t ± 

= - 17 ± (217 ±)k (k;;.O) 

Then we obtain 

1 - 2t'17 ± ' 

or equivalently, 

oa = - a/A. 2, 

0[3 = - [[3(l - 2t[3) + 2A 2ta2]/ A. 2, 

(4.15) 

( 4.16) 

( 4.17) 

(4.18 ) 

which are the same as derived from the infinitesimal trans­
formation (4.2) directly. 

In order to investigate the structures of the infinitesimal 
Riemann-Hilbert transformation, we consider the integral 
equation (1.1) in the case of v (t) = t. Parallel to the above 
treatment, it is known that Kinnesley-Chitre transforma­
tions are given by 

y~kl F(t) F - I (t) 

__ 1_ f s-kF(s)Ta F-I(s) ds (k;;.O) 

21Ti Jeo., s(s - t) 

(4.19) 

if we take 

y~klTa = u(t) - Ta = - Tat - k (k;;.O), (4.20) 

where Ta (a = 1, 2, 3) are generators of the Lie algebra 
SL (2,R) for which the structure constant is denoted by C~b' 
Following the calculations in Ref. 9, we can obtain the fol­
lowing commutations: 

[O(kl,O(/)]E = (k - 1)O(k + IlE, 

roCk), Ybil]E= -lybk+/) E, 

[y~kl, Yb/)]E= C~b y~k+ll E 

(4.21 ) 

(4.22) 

(4.23) 

for all k, 1;;.0. Equations (4.21 )-( 4.23) reveal the fact that 
the infinitesimal Riemann-Hilbert transformations span the 
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structure of the semidirect product of the Kac-Moody and 
Virasoro algebras. 

According to the previous discussion, it should be em­
phasized that the infinite-dimensional Lie algebra only has a 
positive part because k and I are not allowed to be negative. 
In another paper, 10 we considered the transform t- 1/t for 
the linearization equations: Using solutions to these new lin­
earization equations, we proceeded to find another type of 
infinitesimal transformations constituting the negative part 
of the infinite-dimensional Lie algebra. We combined these 
two parts to form the full algebra, which still lacks the cen­
tral term. In a similar way, in the present paper we can also 
show that the other type of infinitesimal transformations 
originate from the infinitesimal Riemann-Hilbert transfor­
mation. Therefore, we can drop out the restriction of the 
positive k and 1 in Eqs. (4.21 )-( 4.23). 

v. DISCUSSION AND APPLICATION 

To examine the structure of the infinite-dimensional 
group for the new form of the Riemann-Hilbert transforma­
tion, let us take the following cases into account. 

(i) Ifu(t) =1, Eqs. (3.13) will give rise to 

F(t) = X+ (t) F~ (t) in C+, 

=X_(t)Fo(v(t») in C_. (5.1) 

Now we take the transformations 

and 

FI (t) = X O+ (t) F~ (t) in C+, 

= Xo_ (t) Fo(vo(t)) in C_ 

F2(t) = XI+ (t) F; (t) In C+, 

=XI_ (t)FI(vl(t») in C_. 

Then we define the new transformation 

F 2 (t) = X2+ (t) F~(t) in C+, 

= X2_ (t)FO(v2(t)) in C_, 

(5.2) 

(5.3 ) 

(5.4 ) 

where F~(t) denotes the transform of Fo(t) by replacing 1/ 
217+ in v2-

1(1/217+)' Using Eqs. (5.2) and (5.3), the 
successive transform of F2(t) can be expressed by 

(5.5) 

where vo(t), vl(t), and v2 (t), respectively, transform FoU) 
into FI (t), FI (t) into F2(t), and Fo(t) into F 2 (t) and where 
X2(t) will be determined by the forms X°(t) and X I (t) in 
terms of the inside or outside of circle C. As explained above, 
this formulation will provide us with a representation of the 
Virasoro group. 

(ii) If u (t) = I, Eqs. (3.13) will be reduced to the origi­
nal Riemann-Hilbert transformation proposed by Hauser 
and Ernst, I i.e, 

F(t) =X+(t)Fo(t) in C+, 

=X_(t)Fo(t)U(t)-1 in C_. (5.6) 

Similar to procedure (i), we can express a successive trans­
form of F(t) as the form 

u2(t) = UO(t)ul(t), (5.7) 
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where uo(t), U 1 (t), and u 2 (t), respectively, transform FoCt) 

intoFI (t), FI (t) intoF2 (t), and Fo(t) intoFz (t). This corre­
sponds to a representation of the Kac-Moody group. 

(iii) In general, neither vet) 7': t nor u(t) =1=1, the Rie­
mann-Hilbert transformation given in Sec. III, admits the 
representation of the semidirect product of the Kac-Moody 
and Virasoro groups. This expression of the Riemann-Hil­
bert transformation is very important and useful because it 
becomes possible to prove a Geroch conjecture stating that 
any given stationary axisymmetric vacuum space-time can 
be generated from Minkowski space by an infinite set of the 
symmetry transformations. 14 

In order to see how to apply our method to the deriva­
tion of some useful Backlund transformations, let us give a 
simpler example. Under our consideration, we set 

u(t) = b (5.8) 

and 

v(t) = rt + f-l, (5.9) 

where bis an element ofSL (2, R) independent oft and rand 
f-l are parameters. Thus the corresponding Riemann-Hilbert 
transformation can be written in the form 

(5.10) 

Since the lhs ofEq. (5.10) is analytic on the whole t plane, 
we can always set 

(5.11 ) 

where B is independent of t. From F(O) = 1, it follows that 

B = b F O-I(f-l). (5.12) 

Thus we finally obtain that 

F(t) = b F 0- 1 (f-l) Fo ( rt + f-l) b - I, (5.13 ) 

which is the formulation of the Neugebauer Backlund trans­
formation found by Cosgrove. 13 If we set b = 1, the transfor­
mation (5.13) is reduced to the combination of the Maison­
Cosgrove transformation. 13 We would like to emphasize 
that from the Hauser-Ernst formalism I of the Riemann­
Hilbert transformation one cannot derive the Neugebauer 
Backlund transformation because it was proved l3 that the 
Neugebauer Backlund transformation lies outside of trans­
formations of the Kac-Moody group. However, since we 
enlarge the Geroch group by the Virasoro group, we can 
state that the Neugebauer Backlund transformation is still 
included in the Geroch symmetry transformations. 

It is interesting to compare the present formalism of the 
Riemann-Hilbert transformation with the Belinskii-Zak­
harov transformation. IS We notice that in the Belinskii­
Zakharov method some scalar functions are put into a solu-
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tion to the Belinskii-Zakharov linearization equations to ob­
tain a new solution. This treatment is similar to the present 
paper. However, the new 1]'+ and 1]'- in our case are still 
solutions of the wave equation (2.11); this is not true for the 
Belinskii-Zakharov method. This is the reason why we, un­
like Belinskii and Zakharov, need not redefine the determi­
nant of the new metric to satisfy the wave equation. On the 
other hand, it is shown 16 that the Belinskii-Zakharov for­
malism does not correspond to the Hauser-Ernst formal­
ism 1 completely. Thus we conclude that the Belinskii-Zak­
harov transformation must be associated with the Virasoro 
symmetry transformation. We need to further investigate 
these relationships in the future. 

Finally, we point out that the approach to the Riemann­
Hilbert transformation introduced in this paper can also be 
applied in other nonlinear systems such as the two-dimen­
sional Heisenberg model and the nonlinear Schrodinger 
equation. 17 We are hopeful that we can use this new transfor­
mation to generate some new solution of the Einstein field 
equations, which is of much interest in physics, from the 
known solution. 
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Certain aspects of symplectic group representation theory are investigated. In particular, it is 
shown that every irreducible representation ofSp(n) admits a relatively large class of states, 
referred to herein as canonical states, which possess properties analogous to the Gelfand­
Tsetlin states appearing in the theory of the orthogonal and unitary groups. The properties of 
canonical states are investigated and some matrix element formulas are derived. 

I. INTRODUCTION 

The theory of Lie groups has now been established as an 
invaluable tool in physical applications. In particular, physi­
cists are familiar with the well-known treatment of the quan­
tum theory of angular momenta, where the group of interest 
is SU (2). The theory of angular momenta is of fundamental 
importance in atomic and nuclear physics, where it has been 
applied to the calculation of wavefunctions, energy levels, 
and transition probabilities. 

Since the development of the angular momenta theory, 
principally by Racah and Wigner, it has become apparent 
that higher order Lie groups play an important role in phys­
ics. For example, the unitary group U (n) plays a fundamen­
tal role in the second quantized formulation of the quantum 
many-body problem and was made the cornerstone of Mo­
shinsky's work on the nuclear shell model. I The orthogonal 
and symplectic groups also play an important role in phys­
ics, particularly in connection with parastatistics,2 wave 
equations, and for the classification of states in atomic and 
nuclear physics. 3 Lie groups also figure prominently in the 
classification of symmetries in elementary particle physics, 
which have been extensively studied since the early 1960's. 
More recently, the group theoretical methods of Moshinsky 
on the nuclear many-body problem have been extended4

-6 to 
the many electron problems of atomic physics and quantum 
chemistry, allowing large-scale configuration interaction 
calculations to be performed7 which would be interactable 
by other methods. 

Therefore, it is not surprising that a great deal of interest 
has been generated in extending the Racah-Wigner theory 
of angular momenta to all the classical Lie groups. The first 
major step in this direction was made by Gelfand and Tsetlin 
(GT),8 who constructed a full set of basis vectors for the Lie 
groups U(n) and O(n): The matrix elements of the (ele­
mentary) group generators in the GT basis were also ob­
tained. This work was subsequently extended by Baird and 
Biedenharn,9 who obtained the matrix elements of all U(n) 
generators in the GT basis. Moreover, the structure of the 
matrix elements (as a product of a reduced matrix element 
and a Wigner coefficient) was determined and hence the 
fundamental (i.e., vector) Wigner coefficients for U(n) 
were given for the first time. The evaluation of all multiplic­
ity-free Wigner coefficients for U (n) was subsequently given 
by Biedenharn and Louck 10 and Baird and Giovannini. II 

Recently, an alternative algebraic approach to this problem 
was presented by Gould 12 and extended to the orthogonal 

groups 13 in order to yield a pattern calculus for the Lie 
groups U(n) and O(n). 

Although considerable progress has been made in the 
representation theory of the orthogonal and unitary groups, 
the symplectic groups, the remaining family of classical Lie 
groups, have received comparatively little attention. This is 
probably due to the fact that, unlike the Lie groups U (n) and 
O(n), there does not exist a canonical orthogonal basis for 
the irreducible representations ofSp (n). The crucial proper­
ty that makes the GT scheme work for U(n) is that in the 
reduction of an irreducible representation of U (n) into irre­
ducible representations of U(n - 1) all irreducible repre­
sentations occur with unit multiplicity.9,14 This property is 
also shared by the orthogonal groups and one would ideally 
like to obtain a similar solution for the symplectic groups. 
Unfortunately, however, in the reduction of an irreducible 
representation of Sp (n) into irreducible representations of 
its subgroup Sp (n - 2) X Sp (2) multiplicities generally oc­
cur l5 and extra invariants are required to completely specify 
the basis states (the symplectic group state labeling prob­
lem). In such a case there still remains the problem of ob­
taining the eigenvalues of these missing labeling invariants, 
which are known to be irrational in general, so that the ac­
tion of the group generators in such a basis is likely to be 
complicated. In this respect the symplectic group state label­
ing problem may be regarded as the prototype of all state 
labeling problems in Lie group theory and applications. 

Recently, Gould and Kalnins (G K) 16 obtained a new 
projection-based solution to the Sp (n) state labeling prob­
lem which yields a nonorthogonal G T -type basis for the irre­
ducible representations. Although this solution offers sever­
al nice features, particularly the simple determination of the 
action of the group generators, the method involves the cal­
culation of the relevant overlap coefficients, a problem 
which is currently unsolved. Nevertheless, the GK solution 
affords a useful tool, particularly for providing checks on 
our formalism, and will be applied throughout this paper. 

This is the first paper in a series of three in which we 
investigate certain aspects of symplectic group representa­
tion theory. We shall not discuss the labeling problem in this 
series of papers; instead, we focus attention on a relatively 
large class of states, herein referred to as canonical states, 
which possess properties analogous to the GT states appear­
ing in the representation theory of the orthogonal and uni­
tary groups. The space of canonical states of an irreducible 
representation includes all distinct weights of the representa­
tion (at least once) and, in particular, contains all states with 
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weight Weyl group conjugate to the highest weight. The re­
duced matrix elements, fundamental Wigner coefficients, 
and matrix elements of all Sp ( n) generators are determined 
between arbitrary canonical states, thus completing the first 
step in a general (multiplicity-free) pattern calculus for the 
symplectic groups. Following the approach of Refs. 12 and 
13 to the orthogonal and unitary groups, it is evident that our 
formalism may be extended to obtain all multiplicity-free 
(canonical) Wigner coefficients for Sp(n). 

In this paper we introduce canonical basis states and 
investigate some of their basic properties. In particular, we 
determine some matrix element formulas for a certain class 
of canonical states, referred to herein as S dominant, based 
on the representation theory of the unitary group U(n). In 
the final two papers of the series we will determine the ma­
trix elements of all Sp(n) generators between arbitrary ca­
nonical states. The evaluation of the corresponding reduced 
matrix elements and Wigner coefficients are also given and 
their generalized Weyl group symmetries are determined. 

Other developments in connection with the symplectic 
groups have been made by Lohe and Hurst, 17 who have ad­
vocated the use of modified boson operators as a method of 
constructing basis states for the irreducible representations 
ofSp(n), in analogy with the boson polynomials used? in the 
theory ofU(n). Explicit matrix element formulas in certain 
degenerate representations ofSp(n) have recently been ob­
tained by Klymik 18 and Wong and Yeh. 19 The method of 
raising and lowering operators to construct bases for the ir­
reducible representations of Sp(n) has been advocated by 
Michelsson20 and Bincer.21 The symplectic groups also fig­
ure prominently in Cartan's classification of homogeneous 
spaces, which afford certain degenerate representations of 
Sp(n), as studied by Pajas and Raczka. 22 A full set of miss­
ing labeling invariants for the symplectic group was recently 
constructed by Bincer.23 Finally, the Sp(n) tSp(n - 2) 
XSp(2) branching rules were recently investigated by Cer­
kaski24 based on the previous work of Zhelobenko. 15 

II. PRELIMINARIES 

We begin by introducing the symplectic group as a sub­
group of the unitary group. The n2 generators aij (1 <i,j<n) 
of the Lie group U(n) satisfy the commutation relations 

and are, moreover, required to satisfy the Hermiticity condi­
tion 

aij = aji 

on finite-dimensional (i.e., unitary) representations of the 
group. To define the symplectic subgroup Sp(n) we intro­
duce an antisymmetric metric gij = - gji in terms of which 
our Sp(n) generators aij = a j; are expressible (where sum­
mation over p is implied), 

aij = g;papj + gjpap;' (1) 

and satisfy the commutation relations 

(2) 
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We also require the existence ofa corresponding contravar­
iant metric i j satisfying (where the summation convention 
over repeated indices is implied) 

gijgjk = o~, 

which imposes the usual limitation to even values of n. 
Without loss of generality we choose the symplectic 

group metric gij to be given by 

{
OJ,; + 1 , i odd, 

gij = 
- OJ,i- l' i even, 

l<i,j<n, 

so that gij = - g,j' We then introduce the operators 

(3) 

(4) 

which, in view of Eq. (2), satisfy the commutation relations 

(5) 

where we define 

a k; =ijaf, 

On finite-dimensional (i.e., unitary) representations of the 
group the Sp (n) generators (4) satisfy the Hermiticity con­
dition 

(aJ)t = a1 (6) 

and the symmetry property (see Appendix A) 

aJ = - (- I);+jai
j

, (7) 

where i (the opposite index to i) is defined by 

-; {i - 1, i even, 
1= 

i + 1, i odd. 
As a Cartan subalgebra for the Lie algebra of 

Sp(n = 2h + 2), we take the vector space spanned by the 
diagonal generators 

a;, l<i<n. 

In view ofEq. (7) only h + 1 of these operators are linearly 
independent, so we only need consider the Cartan generators 

h; = a~;=: = - a~;, l<i<h + 1 

whose eigenvalues provide a unique labeling for the system 
of weights. In view ofEq. (6), we note that the Cartan gener­
ators h; are to be represented by Hermitian matrices on fi­
nite-dimensional irreducible representations. 

From the commutation relations (5) we deduce 

from which it follows that the generators (4) are automati­
cally in Cartan form. If we introduce the fundamental 
weights 

11, = (0,0, ... ,1,0, ... ,0), l<r<h + 1 

consisting of 1 in the rth position and zeros elsewhere, it 
follows immediately from the above that the roots for the 
symplectic group Lie algebra are given by the weights 

We take as a system of positive roots the weights 

11; + I1j (i<J), 11; -11) (kj). 
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The corresponding generators are given by 

a~j - '(iq), a~5 = : (kj) (8) 

respectively, which constitute the set of raising generators. 
We draw particular attention to the elementary raising gen­
erators 

(9) 

Every symplectic group raising generator (8) may be ob­
tained by repeated commutation with generators of the form 
(9). By taking the Hermitian conjugate of Eqs. (8) and (9) 

we obtain the corresponding set of lowering operators. 
We shall be concerned in this paper with the subgroup 

imbedding 

Sp(n) :::) Sp(n - 2) XSp(2), 

where our Sp(n - 2) generators are given by aj 
(l<'i,j<.n - 2) and our Sp(2) generators are given by 

r~ = at, l<.,u, v<.2, (10) 

where we have adopted the index convention 

it = n - 2 +,u. (11 ) 

Throughout this paper we denote the weights for Sp(n) by 
the Greek letter A and the weights of the subgroup 
Sp(n - 2) by the subscripted Greek letter ,10. We let W 
(resp. Wo) denote the Weyl group of Sp(n) [resp. 
Sp(n - 2)]: Recall that 

W~Sh+' ®.l~+' 

where Sh +, is the symmetric group on h + 1 objects. In 
other words, the Weyl group of Sp(n) consists of all sign 

I 

changes and permutations of the weight components. 
The finite-dimensional irreducible representations of 

Sp (n) are uniquely characterized by their highest weights 
,1= (A,,A.2' ... , Ah + , ), whose components Ar are to be inte­
gers satisfying the inequalities 

,1,>,12>·· ·>Ah+' >0. (12) 

We let V(A) [resp. V(Ao)] denote the finite-dimensional 
irreducible module over Sp(n) [resp. Sp(n - 2)] with the 
highest weight A (resp. AD) and we denote the corresponding 
representation by 1T). (respectively, 1T).., ). We let H * (resp. 
H~) denote the dual of the Cartan subalgebra of Sp(n) 
[resp. Sp(n - 2)] and we let A + ~ H* (resp. Ao+ ~ H?;) 
be the lattice of dominant integral weights, i.e., A + consists 
of those weights A whose components are integers satisfying 
the inequalities (12). Finally, we denote elements of H* 
XH~, herein referred to as extended weights, by (,1,,10), 
where A E H*, AD E H~. 

We call an extended weight (,1,,10) E A + XAo+ lexicalif 
the finite-dimensional irreducible Sp(n - 2) module V(Ao) 
is contained in the finite-dimensional irreducible Sp (n) 

module V(A). The set of lexical (extended) weights 
if C A + X Ao+ may clearly be deduced from the 
Sp(n):::) Sp(n - 2) branching rules to which we now tum. 

III. BRANCHING RULES AND THE GK BASIS 

Following Zhelobenko, '5 the branching rules for the re­
duction Sp(n) ~Sp(n - 2) may be obtained by associating 
with each Sp (n) weight A E A + the patterns 

,uh+' , (13) 

where ,ui' ,10, are integers satisfying the inequalities 

Ah + , >,uh + , >0, Ai >,ui >Ai + " 

,ui>Ao,>,ui + " 1 <.i<.h. 
(14) 

The weights ,10 = (,10",10
2

, ••• , ,10'> occurring in Eq. (13) de­
termine the highest weights of the irreducible Sp(n - 2) 
modules which may occur in the irreducible Sp(n) module 
V(A). From the betweenness conditions (14) it thus follows 
that an extended weight (A,A.o) E A + X Ao+ is lexical if and 
only if the components of A and ,10 satisfy the inequalities 

Ai>Ao,>Ai+ 2(1<.kh), Ah>Ao,>O. (15) 

The multiplicity with which the irreducible Lo module 
V(Ao) occurs in V(A) is then given by the number of tuples 
( ,u" ... ,,uh + , ) of non-negative integers whose components 
satisfy Eq. (14). For a given lexical weight (,1,,10) we see 
that the components,ui must satisfy the inequalities 

A, >,u, >AOt V ,12' Ah +' A AD, >,uh + , >0, 
(16) 
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I 
where a A b (resp. a V b) denotes min(a,b) [resp. max 
(a,b) ]. 

Following Gould and Kalnins'6 let V(.:i) denote the 
finite-dimensional irreducible module over U (n = 2h + 2), 
with the highest weight 

.:i = (A,,A.2, ... ,Ah+,,0, ... ,0). 

It is well known '5.25 thatthe irreducible Sp( n) module V(A) 
occurs in V(.:i) with unit multiplicity and hence may be op­
tained by central projection from V(A). To this end let II (A) 
denote the set of all Sp(n) highest weights occurring in 
V(.:i), but excluding A = (A" ... , A h + , ). Then set 

(17) 

where U 2 = aj a{ is the second-order invariant of Sp(n) 
and26 

h+' 
(u2 )v=2 L vr(vr+n+2-2r) 

r= 1 
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is the eigenvalue of U2 in the irreducible module V( v). We 
have the following result. 

Lemma 1: The Casimir invariant U2 separates A from 
the weights in n (A) and, in particular, 

V(A) = p" V(A). 

Proof: Following Hammermesh,25 the highest weights 
of the irreducible Sp(n) modules occurring in V(A) are ei­
ther equal to A or obtained from A via contraction. Thus the 
highest Sp (n) weights occurring in n (A) are of the form 

h+I 
V = A - L m,tl." (18) 

r= 1 

where each mr is a non-negative integer (such that m I 

+ m 2 + .. 'm h + 1 is an even positive integer). Thus for v as 
in Eq. (18) we have 

h+I 
(u2 )" - (u2 )v = 2 L mr(Ar + v, + n + 2 - 2r). 

r= 1 

AIh + 1 A2h + 1 o 

/-lIh+I /-l2h + 1 /-lh+ 1 h+ 1 

AIh A2h 

/-lIh /-l2h 

. . . 

/-lI2 

which, for simplicity, we write in the form 

Al h + 1 

/-lIh+I 

AIh 

/-lIh 

All 

/-lll 

A2h+I"'Ah+Ih+I 

/-l2 h + 1 ... /-l h + 1 h + 1 

AZh ... Ahh 

/-lZh ... /-l hh 

o 

/-l22 

o 
/-lll 

Since v E A + (by assumption) it follows that 

Ar+vr+n+2-2r>O, r=I, ... ,h+l; 

since mr,>O (I <.r<.h + I), the rhs above must be non-nega­
tive and only vanishes when mr = 0 (1 <.r<.h + I), in which 
case V= A. 

This proves the desired result that U 2 separates A from 
the weights in n (A). It follows immediately that the projec­
tion operator ( 17) is well defined and projects V(A) onto the 
subspace V(A) as required. 

Q.E.D. 
The above result shows that we may obtain a set of vec­

tors spanning the irreducible Sp(n) module V(A) byconsid­
ering the central projector (17) applied to the U(n) GT 
basis states of the space V(A). Following Ref. 16, in order to 
obtain a complete set of linearly independent basis states it 
suffices to restrict to GT vectors of the form (herein referred 
to as allowed GT states) 

o 
o o 

o 
o 

o 

o 

(19) 

We denote the space spanned by all allowed U(n) GT states (19) by A(A). 

From the U(n) GT betweenness conditions9 the integers /-li,j and Ai,j in the pattern (19) must satisfy the inequalities 

AIm '>/-llm '>Azm ,>'" '>Amm '>/-lmm ,>0, 

/-lIm '>A 1 m _ I '>/-lZm ,>' .. ,>Am - 1m - 1 '>/-lmm ,>0, 

in agreement with the betweenness conditions ofEq. (14). We sometimes find it more convenient to write the allowed U(n) 
GT state (19) in dual-pattern notation: 

I 
(A) ) 
(/-l) , 

(20) 

where (A), ( /-l) denote the patterns 
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Ath + t A2h+ t Ah + th + t 

Ath A2h Ahh 

(A) = . . (J.l) = . , 

A\2 A22 

A11 

respectively. 

Associated with each row Am in the (upper) (A) pattern 
we construct the associated Sp ( 2m) projector /m in direct 
analogy with Eq. (17). We then construct the compound 
projector 

h+t 
p().) = II i'm. 

m=t 

It follows from Ref. 16 that the Sp(n) states 

I (A) ) _ p I (A) ) 
(J.l) - <,,) (J.l) 

(21 ) 

form a full set of linearly independent basis states for V(A) 
which is symmetry adapted to the subgroup chain 

Sp(n):> Sp(n - 2) :> ... :> Sp(2). 

This is the state labeling scheme obtained by Gould and Kal­
nins. t6 We note that the states (21), although not an ortho­
normal set, are orthogonal w.r.t. their upper patterns. 

The G K states (21) are weight states of weight 
v = (VI,V2, ••• , V h + I ), where the components Vi are given by 

,. j i-1 

v· =2 '" II .. - '" k· - '" k. I' I ~ ~.l ~ ~I ~ ~I-
}-I }=I }=I 

This result is of importance since it allows us to obtain the 
branching rules for the reduction Sp(n)tSp(n - 2) 
XSp(2). Associated with each lexical weight (A,A.o) E!/ 
and pattern (13) isanSp(n - 2) maximal state of weight Ao 
whose corresponding Sp (2) weight (given by the eigenValue 
of the Cartan generator h h + I ) is determined by the integer 

0= 2 f (J.l) - f (A) - f (Ao), 

where we define 

(22) 

f (A) = :t: Ai> f (Ao) = itt Ao;, etc. (23) 

The multiplicity m(O) with which the Sp(2) weight 0 oc­
curs is clearly given by the number ofh + 1 tuples (J.lI,J.l2"'" 
J.lh + I ) whose components are non-negative integers satisfy­
ing the inequalities (16) and Eq. (22). 

We note that for a given lexical weight (A,Ao) the maxi­
mum possible values for the integers J.lr satisfying the in­
equalities (16) are given by 

It follows that the maximum possible Sp(2) weight for a 
given Sp(n - 2) weightAo E Ao+ occurring in V(A) is given 
by 
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J.lth + t J.l2h + t J.lh + th + t 

J.lth J.l2h J.lhh . 
." 

J.lt2 J.l22 

J.l1I 

h 

=A I + L (A r+ 1 A AO,-Ar+ t V AD) 
r= I 

h 

=AI - L \Ao, -Ar + 1\' (25) 
r= I 

which can be shown to be a non-negative integer. 
It thus follows that the irreducible module over 

Sp(n - 2) XSp(2) with the highest weight AoXO",,,,. oc­
curs exactly once in the irreducible Sp( n) module V(A). The 
remaining possible Sp(n - 2) XSp(2) highest weights oc­
curring for a given lexical weight (A,A.o) E !/ are thus neces­
sarily of the form AD X n, with 

_ {o, f (A) + f (Ao) even, 

0-0",,,,,, 0",,,,, - 2, ... , 1, f (A) + f (Ao) odd. 

The multiplicity M(O) (possibly zero) with which the cor­
respondingirreducibleSp(n - 2) xSp(2) module occurs in 
V(A) is clearly given by 

M(O) = m(O) - m(O + 2), 

with m(O) as before. We note that the multiplicities m(O) 
and hence M(O) can be obtained directly from patterns 
(13). 

Throughout this paper we denote the irreducible mod­
ule over Sp(n - 2) XSp(2) with the highest weight Ao 
X 0",,,,. by V(A,A.o) , herein referred to as a canonical submo­
dule of V(A). Thus the irreducible Sp(n - 2) XSp(2) ca­
nonical submodule V(A,A.o) of V(A) is uniquely determined 
as that submodule whose Sp(2) representation label takes 
the maximum possible value, given by Eq. (25), for given 
Sp (n) and Sp (n - 2) representation labels A, Ao, respective­
ly. 

IV. CANONICAL STATES AND SIGNATURES 

Let ~ denote the centralizer of Sp(n - 2) X Sp(2) in 
the universal enveloping algebra V ofSp(n), viz., 

~ = {c E V\ [aJ,c] = [ r~,c] 

= 0,1 <.i,j<.n - 2,1 <'Jl,v<;;2}. (26) 

We remark that Eq. (26) is the algebra from which "missing 
labeling invariants" may be chosen to resolve the multiplic­
ities occurring in the reduction Sp(n)lSp(n - 2) XSp(2) 
(the so-called symplectic group state labeling problem) 
which has been previously discussed by several authors. 23,27 
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In view of the work of] oseph, 28 we note that the center of the 
algebra (26), viz., 

CIJ 0 = {co E C(f I [co,c] = 0, 't/ C E CIJ} 

is given explicitly by 

C(f 0 = ZZo~, 
where Z (resp. Zo, ~) is the center of the enveloping algebra 
ofSp(n) [resp. Sp(n - 2), Sp(2)]. 

If V(A,A.o) is an Sp(n - 2) XSp(2) irreducible canoni­
cal submodule of V(A) it follows, since the 
Sp (n - 2) X Sp (2) highest weight Ao X 0 ;'.A.. occurs exactly 
once in V(A), that elements of the centralizer C(f must reduce 
to scalar multiples when acting on V(A,A.o)' Thus corre­
sponding to every lexical weight (A,A.o) E 2", we have an 
algebra homomorphism 

X;'.A..: C(f --C, c-+X;.,;,,, (c), (27) 

where X;.,;." (c) is the eigenvalue of the centralizer element 
C E CIJ on the canonical submodule V(A,A.o)' Conversely, ev­
ery centralizer element c E C(f determines a function on 2" 
defined by 

Ie: 2" -+C, (A,A.o) -+X~,A.. (c). (28) 

We call the algebra homomorphism determined by Eq. (27) 
a generalized (or extended) infinitesimal character. This de­
finition extends the definition of Harish-Chandra29 for infin­
itesimal characters over the center Z of the universal enve­
loping algebra U of Sp(n) to infinitesimal characters over 
the centralizer C(f. It turns out that the form of the (polyno­
mial) function (28) depends explicitly on the signature of a 
lexical weight (A,A.o) which is defined as follows. 

Definition 1; The signature of an extended weight 
(A,A.o) E H * X H t is defined to be the collection of h inte­
gers, 

S = (SI,S2'"'' Sh)' 

defined by 

(29) 

with sgn (0) = 1. We denote the set of all possible signatures 
by S: clearly, IS I = 2h. 

We say that two extended weights (A,A.o), ( /-L, /-Lo) are 
equivalent (mod S) (or are S equivalent) if and only ifthey 
have the same signature. 

Definition I determines an equivalence relation on 
H*XHt and partitions H*XHt into 2h distinct equiv­
alence classes, herein referred to as S classes. Throughout 
this paper we denote the set oflexical weights with signature 
s simply by 2" •. 

Signatures playa fundamental role in the remaining two 
papers and are intimately connected with the (generalized) 
Weyl group symmetries of Sp(n): Sp(n - 2) XSp(2) re­
duced Wigner coefficients and reduced matrix elements. 10,12 

We wish now to generalize the above procedure down 
the subgroup chain 

Sp(n) ::::> Sp(n - 2) xSp(2) ::::> Sp(n - 4) xSp(2) 

xSp(2) ::::> ... ::::>Sp(4) XSp(2) x· .. XSp(2) ::::> G, 
(30) 
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where G denotes the subgroup 

G = Sp(2) xSp(2) X··· xSp(2) (h + I-fold product). 
(31) 

The corresponding Sp(2) subgroups, denoted SPm (2) 
(1 <m<h + 1), have infinitesimal generators given by 

We now consider states symmetry adapted to the sub­
group chain (30), for which theSPm (2) algebras have repre­
sentation labels which are maximal for given Sp(2m) and 
Sp(2m - 2) representation labels (I<m<h + 1). Such 
states may be represented by a (A) pattern: 

I (A) ) '" 

A lh + I A2h+ I 

Alh A2h 

(32) 

where the Aij satisfy the betweenness conditions [cf. Eq. 
(IS) ] 

(33) 
Amm+ I >Amm>O, A lm >A2m >" '>Amm>O, 

and where W = (WI'"'' Wh + I ) is the weight ofthe state. As 
usual, the rows ofthe pattern (A) correspond to the highest 
weights of the irreducible representations of the subgroups 
Sp (2m) (1 < m <h + I), with the top row corresponding to 
the highest weight of the irreducible Sp(n) module under 
consideration. Since the Spm (2) representation labels corre­
sponding to state (32) are to be maximal, for given Sp(2m) 
labels Am and Sp(2m - 2) labels Am _ I' the Spm (2) repre­
sentation labels corresponding to state (32) are given expli­
citly by [cf. Eq. (25)] 

m-I 

Om = A I.m - L IAr,m - I - Ar+ I,m I, 2<m<h + I, 
r= I 

with 

0 1 = All' 

It follows that the components of the weight W must satisfy 

Wm = Om, Om - 2, ... , - Om + 2, - Om. (34) 

Following Eq. (29), we associate with each pattern (A) 

the signature array 

Slh S2h 

Slh_1 S2h_1 
, (35) 

S22 

Sll 

where Srm = sgn (Arm - Ar+ I m + I)' I<m<h, l<r<m, 
withsgn(O) = 1. The rows Sm ofthearrayofsignatures (35) 
clearly determine the signatures of the lexical weights 
(Am + I' Am), in the sense of Definition 1, for each pair of 
canonical subgroups Sp(2m + 2), Sp(2m) (l<m<h) of 
Sp(n). 
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Throughout this paper we refer to the states (32) as 
canonical states since they playa role in the representation 
theory ofSp(n) equivalent to the canonical GT states famil­
iar in the representation theory of the orthogonal and uni­
tary groups.9.30 We denote the subspace of V(A) spanned by 
the canonical states (32) simply by Vo(A). The remainder of 
this paper is devoted to the structure of the space Vo (A) and 
the properties of canonical states. 

We note that the set of all GK states (21) with a fixed 
(upper) (A) pattern constitutes a reducible representation 
of the subgroup G of Eq. (31), herein denoted VIA): The 
action of the generators ofthe subgroup G on the GK basis 
states (21) is given in Ref. 16. The canonical states ! (A) ) '" 

are uniquely characterized as spanning that irreducible G 
submodule of V(A) whose G representation labels are maxi­
mal. We denote this unique G submodule of VIA) by V~/). 
We thus obtain the following orthogonal G-module decom­
position for the space Vo(A) of canonical states: 

where the sum is over all allowable upper patterns (v). 
Definition 2: We say that the canonical state (32) is G 

maximal if the weight labels take maximum allowed values 
W; = U; (1<i<h + 1). More generally, we say that state 
(32) is G extremal if the G-weight labels take extreme values 
W; = ± U; (1<i<h + 1). 

We denote the above G-extremal states by 

(36) 

where the components of the vector E = (E 1, ... ,Eh + 1) are 
determined by E; = ± 1 according to whether W; = ± U;, 
respectively. The extremal states (36) are uniquely charac­
terized by the fact that their weights occur with unit multi­
plicity in the subspace V(A). In the maximal case E; = 1 
(1<i<h + 1) we denote the state (36) by the special con­
vention 

while in the minimal case E; = - 1 (I <i<h + 1) we denote 
the state (36) by 

!(A»_. (38) 

Clearly the state (37) [respectively, (38)] is the G-maximal 
(respectively, minimal) weight state of the irreducible G 
module Vi/). 

Associated with the G-extremal state (36) is the GK 
state 

I 
(A) ) 
(ext) 

(38') 

whose lower ( f-t) pattern is extremely connected to the pat­
tern (A) and is determined by the vector E in accordance 
with (1<m<h): 

A Arm (1';;;r<h), Em + 1 = + 1, 

f-tm + 1 m + 1 = 0, f-trm + 1 = Ar+ 1 m + 1 

with 
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{
All' El = + I, 

f-tll = 
0, El = -1, 

i.e., the entries of the lower ( f-t) pattern take maximum or 
minimum values. We denote this extremal (f-t) pattern by 
the special convention (A). and we denote the GK state 
(38') by 

I 
(A) ) (39) 
(A). . 

We note that the pattern (A). depends on signature 
(35) of the pattern (A), as well as on the vector E, since 

A A = {Ar+ 1m + 1, Srm = + 1, 
Ar+ 1 m + 1 rm 1 1 

Arm' Srm = - , 

{ 
Ar+ 1 m + I' Srm = - 1, 

Ar+lm+1VArm= 1 _ 1 
Arm' Srm - + . 

In the maximal case E; = 1 (1 <i <h + 1) we denote the pat­
tern (A). by the special convention (A)+; similarly, when 
E; = - 1 (1<i"h + 1) we denote this pattern by (A)_. 

By our construction the GK basis state (39) has the 
same weight as the extremal state (36) and, since this weight 
occurs with unit multiplicity in VIA), states (36) and (39) 
must coincide (up to scalar multiples). All remaining ca­
nonical states may be obtained from the extremal states (36) 
and (39) by application of raising or lowering operators 
from the group G. From the point of view of overlap coeffi­
cients, 16 the above shows that the GK states (39) are orthog­
onal to all remaining GK states ofthe space V(A). 

The above determines precisely the space of canonical 
states Vo(A) with which we are working. Although only a 
subspace of the irreducible Sp(n) module V(A), the space 
Vo(A) nevertheless contains a relatively large number of 
states, as can be seen from the following. 

Theorem 1: (i) All distinct weights of V(A) occur in 
Vo(A) at least once. 

(ii) In particular, all states with weight W conjugate to 
the highest weight occur in Vo(A): This includes the maxi­
mal and minimal weight vectors. 

(iii) If all weights occur in V(A) with unit multiplicity 
we must have V(A) = Vo(A). 

Proot Part (iii) of Theorem 1 follows immediately from 
part (i), as does (ii), if we take into account the factz9 that an 
weights W conjugate to the highest weight A must occur with 
unit multiplicity in V(A). In reference to part (i) we note 
that every weight state in V(A) must be a linear combination 
of weight vectors from each V(A). On the other hand, it fol­
lows from the maximal nature of the space V {/) that the 
vectors in V(A) have weights of the form V= (VI ,V2, ... , 

Vh+ I)' where [cf. Eq. (34)] 

Um>vm> -Um (insteps of two), 

which equals the weight of the canonical state! (A) ) v' This is 
enough to establish the result. 

Q.E.D. 
In addition to the results above, we note that in the de­

generate cases A = (p,O) or (P), considered in the work of 
Wong and Yeh,I9 we necessarily have Vo(A) = V(A). Thus 
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our results on canonical matrix elements include those of 
Wong and Yeh 19 as a special case. 

V. 5-00MINANT (A) PATTERNS 

In the work of Gould and Kalnins 16 it was shown that 
the Sp(n) maximal weight state of the space V(A) is given by 
the U(n) GT state (notation as in Secs. III and IV) 

A (m~x»)= 
I(max»+= A 

(max) 

A ) 
(max) 

A E V(A) !: V(.~,) 
(max) 

whose upper and lower patterns take maximal allowed val­
ues. In the single-pattern notation of Eq. (19), the above 
U(n) GT state may be expressed as 

Al ..1,2 

Al ..1,2 

AI ..1,2 

AI ..1,2 

AI ..1,2 

AI 
AI 

Ah Ah+1 

Ah Ah+1 

Ah 

Ah 

and it is easily verified that it indeed constitutes an Sp (n) 

maximal weight state ofweightA. It is our aim in this section 
to demonstrate that there is a relatively large class of canoni­
cal states which are represented by U(n) GT states: In such 
a case the U(n) GT states (20) [or (19)] must coincide 
with the projected states (21). 

The signature s of a lexical weight (..1"..1,0) E 2" was de­
fined in Sec. IV (see Definition 1): We denote the space of all 
lexical weights of signature s by 2" •. In particular, we have 
the lexical weights with maximal signature: 

(i) = (1,1, ... ,1). 

We call lexical weights of maximal signature S dominant: 
They play an important role in the remaining two papers 
since such lexical weights have similar properties to lexical 
weights l2 for the normal canonical imbeddings U(n) 
::) U(n - 1), O(n) ::J O(n - 1). Becauseofthespecialna­
ture of this case we denote the space 2" (i) of S-dominant 
lexical weights by 2" +. We similarly have the space 2" _ of 
lexical weights with minimal signature ( - 1, - 1, ... , - 1). 
By definition it follows that an extended weight (..1"..1,0) E A + 
X Ao+ is S dominant if and only if the components of A and 

..1,0 satisfy the betweenness conditions 

(40) 

We note that such an extended weight satisfies the inequal­
ities (15) and hence is automatically lexical. 

In terms of signatures, we note that the maximum Sp( 2) 
label ofEq. (25) may be expressed as 

h 

0A.A" =..1,1 + L Sr(Ar+ 1 -..1,0)' (41) 
r= I 
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where s = (SI"'" Sh) is the signature of the lexical weight 
(A,Ao). Thus if (A,Ao) is S dominant we have 

0A.Ao = J (A) - J (..1,0)' (A,Ao) E 2" +, (42) 

with f(A) as in Eq. (22). 
Definition 3: Proceeding down the subgroup chain (30) 

we say that the canonical state I (A) ) w ofEq. (32) is S domi­
nant if, in addition to Eq. (33), the entries of the pattern (A) 
satisfy the inequalities 

(43) 

Throughout this paper we denote the space of S-dominant 
canonical states by V + (A) !: Vo (A) . 

Clearly the above definition of S-dominant (A) patterns 
is equivalent to requiring that the lexical weights 
(Am,Am _ I ) be S dominant for each pair of canonical sub­
groups Sp(2m), Sp(2m - 2) (2<.m<.h + 1) ofSp(n). In 
such a case the representation labels of the subgroups 
Spm (2) (1<.m<.h + 1) are uniquely determined by 

It follows that if the pattern (A) is S dominant, then the 
extremal state I (A) ) E has the weight (iJ given by 

2<.m<.h + 1 

according to 
(1<.m<.h + 1). 

whether respectively 

The importance of extremal S-dominant canonical 
states lies in the following result [notation as in Eq. (39)]. 

Theorem 2: Suppose the pattern (A) is S dominant. 
Then the extremal canonical state I (A) ). is given by the 
U(n) GT state 

(44) 

D 
Before going on to the proof of Theorem (2) we denote 

the allowable U(n) GT state on the rhs of Eq. (44) by 
I (A) E) and note that this state may be expressed in the sin­
gle-pattern notation of Eq. (19) according to 

Alh+1 Ahh+ I Ah+ I h+ I 

A ih+ I Ahh+1 A h+lh + I 

Alh AM 

A ih Ahh 
1(..1,).)= . . . (45) 

..1,12 ..1,22 

A i2 Ai2 
..1,11 

Ail 

where 
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l<m<h + 1 
{

Arm' (l<r<m); Em = + 1, 

A;m = 

Arm _ l' (1<r<m - 1); 0, (r= m); Em = - 1. 

In particular, for the maximal case E; = 1 (1 <i<h + 1) the 
above U(n) GT state reduces to 

Alh+l Ahh + 1 Ah+lh+l 

Alh+ 1 Ahh + 1 Ah+ 1 h+ 1 

Al h Ahh 

i{A)+) = Alh Ahh (46) . . . 
..1,12 ..1,22 

All 0 

All 

The main step in the proof of Theorem 2 is the following 
result (notation as above) . 

Lemma 2: Suppose (A.Ao) E!f +. Then the canonical 
module V(A.Ao) ~ V(A) is the unique irreducible 
Sp(n - 2) xSp(2) module with the highest weight 
AoX [ f(A) - f{Ao)] occurring in the irreducible U(n) 
module V(A). 

Proof Suppose v'i.A
n 
~ VeAl is an Sp(n - 2) XSp(2) 

irreducible module with the highest weight 
AoX [ f(A) - f(Ao)]' We show that VA,An ~ VeAl. To see 
this we note that the only other irreducible Sp(n) modules 
V( Il) occurring in V(A) have highest weights Il obtained 
from A via contraction: For such a case we have Ar>llr 
(1 <r<h + 1). It follows that if V( Il) ~ V(A) is such that 
(ll.Ao) E!f [i.e., V(Ao) is contained in V( Il)], then 

Ao,>Ar+ I >Ilr+ l' 1 <r<h, 

so that ( ll.Ao) is also S dominant. Thus the maximum possi­
ble Sp(2) label for given ( ll.Ao) E !f + is given by 

f (Il) - f (Ao)<f (A) - f (..1,0)' 

with equality if and only if Il = A. This shows the required 
inclusion VA,A

n 
~ V(A). On the other hand, we have already 

seen in Sec. III that the canonical submodule V(A.Ao) is the 
unique irreducible Sp(n - 2) XSp(2) submodule of VeAl 
with highest weight AoX [f(A) - f(Ao)], from which we 
obtain the result. 

Q.E.D. 
Corollary: Suppose (..1"..1,0) E !f + and \{I E V(A) trans­

forms as a state in the irreducible Sp(n - 2) module V(Ao)' 
If 

hh + 1 \{I = ± [ f (A) - f (..1,0) ] \{I, 

then \{I E V(A,Ao) ~ V(A). 
Proof: From the proof of Lemma 1 we know that given 

..1,0 as above, the maximum possible Sp(2} representation 
label occurring in VeAl isn = f(A) - f(Ao)' Thus if \{I sat­
isfies the conditions of the lemma it follows, from maxima­
lity of 0., that \{I can only belong to the irreducible 
Sp(n - 2) xSp(2) module with the highest weight AoXn. 
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I 
On the other hand, from Lemma 2, V(A.Ao) ~ V(A) is the 
unique irreducible Sp(n - 2) XSp(2) module with highest 
weight Aoxn occurring in VeAl, from which the result fol­
lows. 

Q.E.D. 
We are now in a position to prove Theorem 2 by recur­

sion down the subgroup chain (30). By the inductive hy­
pothesis we assume that the GT state obtained from the state 
(45) by omission of the top two rows constitutes an extremal 
canonical state of Sp(n - 2) belonging to the irreducible 
Sp(n - 2) module V(Ah ). However, for Eh+ 1 = ± 1 the 
state (45) has Sp(2) weight ± [f(A h + 1) - f(A h )], re­
spectively. Thus the conditions of the above corollary are 
satisfied, hence the GT state (45) constitutes a state in the 
Sp(n) module V(A h + I)' which is symmetry adapted to the 
subgroup chain (30) and whose G-representation labels are 
all maximal. This is enough to ensure that the state (45) 
determines a canonical state ofSp (n) (which is necessarily S 
dominant and G extremal), as required. This completes the 
proof of the theorem. 

Theorem 2 shows that all G-extremal S-dominant ca­
nonical states belong to the space A (A) of allowable U ( n ) 
GT states. All remaining S-dominant canonical states may 
be obtained from the extremal states by application of raising 
or lowering operators from the subgroup G. On the other 
hand, Gould and Kalnins l6 have shown that the space of 
allowable U (n) G T states A (A) is stable under the action of 
the subgroup G. It follows that the space V + (A) of S-domi­
nant canonical states is contained in the space A (A). In fact, 
we conjecture the result: 

A(A) n VeAl = V+(A). 

We note that the maximal state of the Sp(n) module 
V(A) is a G-maximal S-dominant canonical state and hence 
is represented by a U(n) GT state, as noted earlier. We con­
clude this section by showing that all basis states with weight 
Weyl group conjugate to the highest weight belong to the 
space ofG-extremal, S-dominant canonical states and hence 
are represented by U(n) GT states. 

For each index m E {I, ... , h + 1} we may define the 
Sp(n - 2) weight 

which is obtained from the Sp(n) maximal weight by omis­
sion of the mth component. Similarly, for each pair of indices 
l<m#k<h we have the Sp(n-4) weight (m<k, as­
sumed) 

More generally, for any set of k distinct indices 1<i1, ... , 

ik<h + 1 we have the Sp(n - 2k) weightA(il'"'' i k ), which 
is obtained from the highest weight A by omission of the 
components i1,i2 , ... , ik • We note that the weight A (i!>" .. , ik ) 
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constitutes the highest weight of an irreducible Sp(n - 2k) 
module. 

Now let (i1,i2, ... , ih + I) be any permutation of the 
numbers (1,2,' ',h + 1) andconsidertheSp(2m) represen­
tation labels Am defined by 

Ah+1 =A,Am =A(im+I"'"ih,ih+ I)' 1 <;m<;h. 

Then these vectors determine the rows of an S-dominant (A) 

pattern 

(A) = 

,12 

AI 

and the corresponding G-maximal state 1 (A) ) + has weight 

(Ai, ,Ai,,"" Aih + I)' 

which is W conjugate to the highest weight. More generally, 
the G-extremal states 1 (A) ). have weight 

(EIAi"E0i" ... ,Eh+IAih+,)' Ei= ±I, 
which is necessarily W conjugate to the highest weight L 
This shows that all (normalized) Sp(n) states with weight 
W conjugate to the highest weight are G-extremal S-domi­
nant canonical states and hence, by Theorem 2, are given by 
(allowed) U(n) GT states. 

The above results show that a relatively large class of 
states are simply represented by allowable U(n) GT states. 
This then enables us to determine the action of the elemen­
tary Sp(n) generators on such states by exploiting the 
known action of the U(n) generators on GT states. 

VI. ACTION OF Sp(n) GENERATORS ON 5-00MINANT 
CANONICAL STATES 

It is the purpose of this section to derive the matrix ele­
ments of the elementary Sp(n) generators (9) between S­
dominant canonical states by exploiting the known matrix 
element formulas of the U (n) generators. This work, of in­
terest in its own right, also serves the role of providing a 
detailed check on our later matrix element formulas to be 
developed for the Sp (n) generators between arbitrary ca­
nonical basis states. 

We note that the elementary generators a~ - I, a~ _ 1 

constitute the generators of the subgroup Sp(2) of Sp(n) 

I 

and hence their action on arbitrary canonical states 1 (A) ) w 

is easily determined from the known Sp(2) matrix element 
formulas (see Appendix B): 

a~-II(A»w 

=~(n-liJh+l)(n+liJh+1 +2) I(A»w+2~h+I' 
(47) 

where n = f(A h + 1 ) - S(A h ) is the SPh + 1 (2) representa­
tion label. Thus we concentrate here on obtaining the matrix 
elements of the elementary generators a~;:;: : , a~:::: on S­
dominant canonical states. 

We recall that our Sp(n) generators a7 may be ex­
pressed in terms of the U (n) generators a ij according to (cf. 
Appendix A) 

where k is given by Eq. (7). In particular, we have the gener­
ators 

a~j =: = a2i _ 1,2j _ 1 - a2j,2!> 1 <;i, j<;h + 1. (48) 

Now let 1 (A» + be a G-maximal S-dominant canonical 
state which [cf. Theorem 2] is represented by the U(n) GT 
state ( 46). It is easily verified from the known30 action of the 
U(n) generators that the even U(n) generators 

a2j•2i , 1 <;i, j<;h + 1 

necessarily vanish on the U(n) GT state (46). Thus the 
action of the Sp(n) generators (48) on the state 1 (A» + 

reduces to the action of the U(n) generatora2i _ 1.2j+ Ion the 
GT state (46), which follows from the known U (n) matrix 
element formulas. We obtain immediately the result (cf. Ap­
pendix C) 

m 

a~;;::;:: 1(,1»+ =a~;;::;:: 1(,1»+ = L N;."I(A + Il;."»+, 
r~ 1 

(49) 

where (A + Il;.") denotes the pattern obtained from (A) by 
increasing the representation label Arm by one unit and leav­
ing the remaining pattern labels unchanged. The coefficients 
N;." appearing in expansion (49) are given by 

N;." = ( ( _ 1)m rr;~+"(A:m+ 1 - Arm + r - p) rr;;":"(Arm - Aqm_ 1 + q - r+ I) )112. 
rrp~I(Arm -Apm +p-r)(Arm -Apm +p-r+ 1) 

~r 

(50) 

Similarly, for the lowering elementary generators a~;;::::, we obtain (see Appendix C) 
m 

a~;;:::: 1 (A» + = a~;;:::: 1 (A» + = L N;."I (A -Il;."» +' (51) 
r= 1 

where 
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N';' = ( ( _ l)m n;~II(A:m + 1 - Arm + r - p + 1) n;=-II(Arm - Aqm _ 1 + q - r»)I!2. 
np=I(Arm -Apm +p-r)(Arm -Apm +p-r-l) 

#r 

(52) 

Our analysis is simplified by noting that the Sp(n) gen­
erators 

13 i 2i- 1 
j = a 2j _ l , l<i, j<h + 1 (53) 

constitute the generators of a U (h + 1) subgroup of 
Sp(n = 2h + 2). Also, as seen from Eqs. (49) and (51), the 
elementary U (h + 1) generators 

(54) 

take an S-dominant G-maximal canonical state I (A) ) + to a 
linear combination of such states. Since every U( h + 1) gen­
erator 135 may be obtained by repeated commutation with 
the elementary generators (54) it follows that the space of 
G-maximal S-dominant states I (A) ) + is to constitute a 
module over U (h + 1). Also, the requirement that the pat­
tern (A) be S dominant is equivalent to the requirement that 
(A) bea U(h + 1) GT pattern9 for the irreducible represen­
tation of U (h + 1) with highest weight A = Ah + 1 (top row 
of pattern). Moreover, we note that the action of equations 
(49) and (51) and the matrix element formulas (50) and 
(52) coincide precisely with the usual U(h + 1) elementary 
matrix element formulas30 (between GT states), viz., 

m 

13:+11(,1» = L N';'I(A + a,;,», 
r= 1 

m 

13:+ 11(,1» = L N,;,I(A-a,;,», 
r= 1 

where I (A) ) denotes a U (h + 1) GT state, with N ,;" N ';' as 
in Eqs. (50) and (52), respectively. 

It follows that the space of S-dominant G-maximal ca­
nonical states is to constitute an irreducible module over 
U (h + 1) with the highest weight A = Ah + 1 • In particular, 
the nonzero matrix elements of the Sp (n) generators (49) 
between S-dominant G-maximal states are given by 

+«A')la~5=: 1(,1» + = «A ')1 1351(,1», (55) 

which may be obtained from the known31 matrix element 
formulas of the U (h + 1) generators. 

Similarly, with regard to the G-minimal S-dominant ca­
nonical states (38) which are given by the U(n) GT states 
I (A) _), we note that the U(n) generators a2i _ 1.2j- 1 always 
vanish on the GT states (38). Hence the action of the Sp(n) 
generators ( 48) reduces to the action of the U (n) generators 
- a2j•2i acting on the U(n) GT states (38). In this case we 

obtain immediately (cf. Appendix C) 

a~: :; : I (A) ) _ = - a2m + 2.2m I (A) ) -

m 

- L N';'I(A - a,;,»_, (56) 
r= I 

m 

- L N';'I(A + a,;,»_, (57) 
r= 1 
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with N';', N';' as in Eqs. (50) and (52), respectively. It fol­
lows in this case that the space of S-dominant G-minimal 
canonical states I (A) ) _ is to constitute an irreducible mod­
uleoverU(h + 1), which is dual (orcontragradient) to the 
representation afforded by the G-maximal S-dominant ca­
nonical states I (A» +. In particular, the nonzero matrix ele­
ments of the Sp (n) generators (48) between S-dominant G­
minimal canonical states are given by 

_ ( (A ') I a~5 = : I (A) ) _ = - « A ') I 131 (A) ) 

= - «A) I 1351 (A ') ) 

[cf. Eq. (55)], where the rhs is given by the known30 

U (h + 1) matrix element formulas. 
In this way we may obtain the action of the elementary 

Sp(n) generators on G-maximal or -minimal S-dominant 
canonical states. The action of these generators may similar­
ly be determined on arbitrary S-dominant canonical states 
by expressing these states in terms ofU(n) GT states [in 
accordance with Theorem 2] and using the known action of 
the U (n) generators. However, apart from the G-maximal 
and -minimal cases discussed above, this approach generally 
results in a linear combination ofU(n) GT states which do 
not correspond to S-dominant canonical Sp(n) states, so 
that direct comparisons with our symmetry adapted formal­
ism will be difficult. We shall not pursue this line of thought 
any further here since an alternative method for obtaining 
these matrix elements between arbitrary canonical (not nec­
essarily S dominant) states will be developed in the subse­
quent papers of the present series. 

VII. CONCLUSIONS 

We have shown that every irreducible finite-dimension­
al representation of the symplectic group Sp(n) admits a 
relatively large number of states, herein referred to as ca­
nonical states, which possess properties analogous to the GT 
states for the orthogonal and unitary groups. In particular, 
the space of canonical states contains all distinct weights of 
the representation at least once. Moreover, in the S-domi­
nant case it was shown that every G-extremal canonical state 
is given simply by a U (n) GT state and that the space of G­
extremal S-dominant canonical states contains all states 
with weight Weyl group conjugate to the highest weight. 

By exploiting the known action of the U(n) generators 
on U(n) GT states, the matrix elements of the elementary 
Sp(n) generators between G-maximal or -minimal S-domi­
nant canonical states were determined. Unfortunately, how­
ever, this method is difficult to extend to the general canoni­
cal states and moreover, the structure of the matrix elements 
(as a product of a reduced matrix element and a Wigner 
coefficient) is not apparent in this approach. This deficiency 
will be removed in a subsequent paper, where an alternative 
direct evaluation of the Sp(n) generator matrix elements 
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between arbitrary canonical states will be given. The results 
of this paper will then provide a useful check on our later 
matrix element formulas. 
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APPENDIX A: COMMUTATION RELATIONS 

In the opposite index notation of Eq. (7) our Sp(n) 
metric may be expressed as 

gij = gji = - ( - i)i8/1, 

i.e., 

gil = gii = - ( - 1)i, l.;;;i.;;;n, 

where all other entries are zero. Thus for our Sp(n) genera­
tors (4), we obtain 

i g'·k (I a j = a kj =g aij 

=gii(gjpapj +gjpapi) 

= gii(giiaij + gjja]j) 

=a·· - (-I)i+ja~~ l';;;i, j·.;;;n. 
Ij J " 

We thus obtain, in particular, 

a~;=: =a2i-I.2j_1 -a2j•2iO l.;;;i, j.;;;h+ L 

In view of Eq. (A 1) we obtain 

- (- l)i+i(a]i - (_1)i+iaij ) 

- (_I)i+ia.£, 
1 

(A1) 

which is the symmetry condition ofEq. (6). Finally, we note 
that the Sp (n) commutation relations (5) may be expressed 
in opposite index notation according to 

APPENDIX C: MATRIX ELEMENTS 

[a;,an =8ja; -8;aj- (_1)i+i(8fa~ -8~a1), 

as may be readily verified using Eq. (AI). 

APPENDIX B: REPRESENTATION THEORY OF Sp(2) 

TheSp(2) generatorsr~ (l';;;lt,v.;;;2) ofEq. (10) satisfy 
the commutation relations (cf. Appendix A) 

[r~,r~] =8~ r~ -8~ r~ - (-1)1'+V(8~ r~ 

- 8~ r~), 

where i1 is given by i1 = I (resp. 2) according to whether 
It = 2 (resp. I). The finite-dimensional irreducible repre­
sentations ofSp(2) are uniquely characterized by the high­
est weight 0, which is a non-negative integer. The corre­
sponding representation space has dimension 0 + 1 and 
admits a basis of weight vectors lOw) 
(w = 0,0 - 2, ... , - 0 + 2, - 0): 

r: lOw) = - rllOw) = wIOw). 

The second-order invariant 
2 

O"-~ I'v 
Z - ~ r v rl' 

I'.v= I 

takes the constant value 

(O"z)o = 20(0 + 2) 

in the irreducible representation with the highest weight O. 
It follows that the nonzero matrix elements ofthe rais­

ing Sp(2) generator ri are given by 

(O,w + 21ri lOw) = (Owlft ri lOw) I/z. 
Using 

O"z = (rDZ + (rl)z + ri ft + ft r~ 

= 2(rl)z + 4rl + 2ft r~. 

we thus obtain 

(O,w + 21r~ lOw) = (Owl!lTz - w(w + 2) lOw) 1/2 

= [(0-w)(0+w+2)]I/Z, 

in agreement with Eq. (48). 

In the dual-pattern notation of Eq. (20), the nonzero matrix elements of the U(n) generator a2m _ 1,2m + I between 
allowed G T states are given by 

(C1) 

where, in the notation of Gould,30 N~m, N:m-I denote the matrix elements of the elementary U(n) generators aZm.2m + \0 

a2m _ I,Zm' respectively. In dual-pattern notation, we obtain, from the formulas of Ref. 30, the results 

N 2m = (' 1- )-IIZ[ ( - 1)m II;~II(ltpm+ I -Arm + r- p)II:;'= I (Arm -Itqm + q - r+ 1) ]112 
r Arm +m+ r , 

11:;'= I (Arm -Aqm +q-r)(Arm -Aqm +q-r+ 1) 
#r 
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from which we deduce 

[ 

n;:I\Upm+1 -Arm +r-p)n;=I(Arm -/-tqm +q-r+ 1) 

N';'I = sn(r-l) (-1) #1 

. n;=I(Arm -Aqm +q-r)(Arm -Aqm +q-r+ 1) 
#r 

(C2) 

To determine the action of the U(n) generators a2m _ 1.2m + I on the G-maximal S-dominant state I (A» + we observe, in 
view of Theorem 2:, that this state is given by the U(n) GT state (46), which may be expressed in dual-pattern notation 
according to 

I 
(A») I (A) ) + = (A) , 

where the lower (/-t) pattern coincides precisely with the upper pattern (A). It follows, in view of the Eq. (C1), that the action 
of the generator a2", _ 1.2m + I on the above state is given by 

I
{A»)- m Nm I(A+a,;,») 

a2m-I.2m+1 (A) - r~1 r (A + a,;,) , (C3) 

where we note that the U(n) GT states on the rhs have maximal lower (/-t) patterns and hence represent G-maximal S­
dominant symplecdc group states, as required. 

The matrix elements N';' of Eq. (C3) are given, in the notation of Eq. (C 1 ), by 

which may be evaluated from the r = I case of Eq. (C2) with the substitutions 

Arm = /-trm' 1 <;r<;m, 1 <;m<;h + 1 . 

We thereby obtain 

N';'= [( _1)m n;:/(A:m+ 1 -Arm +r-P)ni=-II(.,t rm -Aim_I +l-r+ 1)]112, 

np=I(Arm -Apm +p-r)(Arm -Apm +p-r+ 1) 
#r 

in agreement with Eq. (50). In a similar way we deduce the 
result 

(C4) 

with N';' as in Eq. (52). This demonstrates the matrix ele­
ment formulas of Eqs. (49 )-( S2), as required. The matrix 
element formulas of Eqs. (56) and (57) follow from a simi­
lar analysis. 

We remark that Eqs. (C3) and (C4) demonstrate that 
the space of allow(:d U (n) GT states of the form 

I 
(A») 
(A) , 

(C5) 

with (A) S dominant, is invariant under the action of the 
U(n} generators G'u _ 1.2j- I (1<;i,j<;h + 1). Since the even 
U(n) generators "U.2j (1 <;i,j<;h + 1) vanish on the states 
(C5), this implies that the above space of states is stable 
under the action of the Sp(n) generators a~;=:, i.e., the 
space of G-maximal S-dominant canonical symplectic group 
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I 
states I (A) ) + is stable under the action of the Sp (n) genera-
tors (48), as noted in Sec. VI. 
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The associated spherical functions of the homogeneous spaces SO (n) ISO (n - 1), U (n) I 
U(n - 1), and Sp(n)/Sp(n - 1) are found in different coordinate systems: They are matrix 
elements of representation operators, right invariant with respect to the subgroups SO (n - 1), 
U(n - 1), and Sp(n - 1), respectively. The left index of these matrix elements corresponds to 
the reductions onto the subgroups SO(p) XSO(q); U(p) XU(q); and Sp(p) XSp(q), 
P + q = n. The relations between these spherical functions are derived. These relations lead to 
the formulas connecting the Clebsch-Gordan coefficients for the groups SO(n), U(n), and 
Sp(n). 

I. INTRODUCTION 

Let G be a compact Lie group and Hand K its subgroups 
such that G = HBK, where B is a commutative subgroup. 
Let T be an irreducible unitary representation of G having 
class 1 with respect tol K and let e be a normalized vector in 
the carrier space Vof T, which is invariant with respect to 
the operators T( k), kEf(. The space V decomposes into the 
linear subspaces VI"'" V m' irreducible for the operators 
T(h), hEll. Let us choose an orthonormal basis {f) in V 
consisting of bases of the subspaces V" r = 1, ... ,m. The ma­
trix element (fj I T(g) Ie) is called an HK-associated spheri­
cal function of the representation T. If f is an orthonormal 
vector, invariant with respect to the operators T(h), hEll, 
then the matrix element (fl T(g) Ie) is called an HK-zonal 
spherical function of T. If H = K we then have the usual 
associated and zonal spherical functions. 

In this paper we find HK-associated and HK-zonal 
spherical functions for the groups SO (n), U (n), and Sp (n), 
where H coincides with SO(p) XSO(q), U(p) XU(q), 
Sp(p) XSp(q),p + q = nand K coincides with SO(n - 1), 
U (n - 1), and Sp (n - 1). Moreover, we show that spheri­
cal functions of the groups U(n) and SO(2n), as well as 
spherical functions of the groups Sp(n) and SO(4n), are 
related by simple formulas. 

Our spherical functions are of great significance for ap­
plications. These spherical functions constitute the semican­
onical bases of representation spaces for the groups SO (n), 
U(n), and Sp(n) which are bases corresponding to reduc­
tion onto the subgroups SO(p) XSO(q), U(n) XU(q), 
Sp (p) X Sp (q), p + q = n, respectively. These bases are use­
ful for solving some physical problems since they realize ex­
plicitly decomposition of irreducible representations of G 
into a sum of representations of H. Besides, HK-spherical 
functions are related with harmonic analysis on the homoge­
neous space G I K. 

We should like to turn the reader's attention to the con­
nection between spherical functions of the groups SO(n), 
U(n), and Sp(n). This is a small part of the broad problem: 
relations between representations of these groups. These re­
lations exist and are of great interest for physics and math­
ematics. If the irreducible representations of SO (n) with the 
highest weights (m,O, ... ,O), m>O; ofU(n) with the highest 
weights (m l,0, ... ,0,m2), m l>O>m2; and of Sp(n) with the 
highest weights (m l,m2,0, ... ,0), m l>m2>0 are considered, 

then we can state that in some meaning, representations of 
U(n) are the Fourier transform of representations of 
SO(2n) and representations of Sp(n) are the spherical 
transform of representations of SO ( 4n). 

The connection between spherical functions of the 
groups SO(n), U(n), and Sp(n) has some consequences. In 
particular, we show that the connection implies correspond­
ing relations for Clebsch-Gordan coefficients (CGC's) of 
these groups. 

There are relations between representations of compact 
and noncom pact Lie groups with the same complexifica­
tion.2-5 In particular, the pairs SO(p + q) and SOo(p,q), 
U(p + q) and U(p,q), and Sp(p + q) and Sp(p,q) have the 
same complex Lie groups. Therefore, it is natural that there 
are relations between HK-spherical functions of the groups 
SOo(p,q) , U(p,q), and Sp(p,q): They are shown in Ref. 6. 

II. DECOMPOSITIONS OF THE GROUPS SO(n), U(n), 
AND Sp(n) 

Let Rand e be the fields of real and complex numbers 
and let Q be the set of quaternions denoted by the common 
symbol F. If qEQ, then q = a + ib + jc + kd, where a, b, c, 
and d are real numbers and i,j, and k are imaginary units. We 
have Iql2 = a2 + b 2 + c2 + d 2

• 

The set of points (wI, ... ,wn)EF', for which 

IWI12 + ... + Iwn l2 = 1 

is the sphere S: _ I of unit radius. If F = e, then Wj 

= aj + ibj , where ajER, bjER, and we have 

I I Wj 12 = I (aJ + b J) . 
J j 

Therefore, S ~ _ I = S fn _ I . In the same way we show that 

S <; _ I = S ~n _ I = S:n - I . 

The groups SO(n), U (n), and Sp(n) consist of matrices 
that conserve the form IWI12 + ... + IWn 1

2, where 
(wI, ... ,wn ) belongs to R n, en, and Qn, respectively. The 
group Sp(n) consists of quaternion matrices which can be 
realized by 2n X 2n complex matrices. For this reason, the 
notation Sp(2n) is often used instead ofSp(n). 

Ifwo = (0, ... ,0,1), then the stationary subgroup for Wo is 
SO(n - 1), U(n - 1), or Sp(n - 1). Therefore, 
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SR _ SO(n) 
n - I - SO(n _ 1) , 

SQ _ Sp(n) 
n - I - Sp(n - 1) 

SC = U(n) 
n-I U(n-1)' 

(1) 

A real rotation by the angle () in the (xj , x k ) plane is 
denoted by gjk «(). For brevity, the rotation gk,k + I «() will 
be denoted by gd() and the diagonal matrix 
diag(1, ... ,I,q,I, ... ,I), Iql = 1 ofU(n) or Sp(n) will be de­
noted by dk (q), where k means that q is on k th entry. 

Let us introduce the spherical coordinates ()\"",()n _ I 
on the sphere S: _ \ ' The point x = (x 1"",Xn )ES: _ I can be 
represented as 

XI = sin ()n _ I ,. 'sin ()2 sin ()I , 

(2) 

Xn = cos ()n - I . 

With these spherical coordinates point x is obtained from 
point Xo = (0, ... ,0,1) as 

(3) 

The matrices g n _ I «() n _ I) form the one-parameter 
subgroup, which will be denoted by A. Since 
gl«()I)'''gn_2«()n_2)ESO(n-l), we have S:_I 
= SO(n - 1 )Axo: It follows from this and (1) that 

SO(n) = SO(n - I)A SO(n - 1). (4) 

The point z = (ZI,,,,,Zn )ES;_I is represented as 

ZI = (exp irPI )sin ()n _ I" 'sin ()2 sin ()I , 

(5) 

zn=(expirPn)COS()n_I' 

It is obtained from point Zo = (0, ... ,0,1) as 

z = d l (rPl )d2(rP2)gl «()I)" 'dn (rPn )gn - I «()n - I )Zo . 

The elements d n (rPn) form the one-parameter subgroup, 
which will be denoted by D. It is clear that D-U(1). We 
have 

S;_I = U(n - I)DAzo' 

Therefore, 

U(n) = U(n - 1)DA U(n - 1) . 

The point q = (ql, ... ,qn )ES ~ _ I is represented as 

ql = U1 sin ()n-I .. 'sin ()2 sin ()I , 

q2 = U2 sin ()n-I ,. 'sin ()2 cos ()I , 

qn = Un cos ()n - I' 

(6) 

(7) 

where UjEQ, IUj I = 1. The set of quatemions q, such that 
Iql = 1, forms the group Sp(1). We have 

S~_I =Sp(n-l)Sp(l)Aqo, 

where qo = (O, ... ,O,l)ES~_I· Therefore, 

Sp(n) = Sp(n - I)Sp(1)A Sp(n - 1) . (8) 

Let us introduce the polyspherical coordinates 
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XI = sin ()cos a p _ 1 , 

Xp = sin () sin a p _ I" . sin a 2 sin aI' 

xp+ I = cos ()sin/3q_I" 'sin/32 sin/3I' 

Xn = cos () cos /3 q _ I 

(9) 

on the sphere S: _ I' where q = n - p. With these coordi­
nates the point X is obtained from Xo = (0, ... ,0,1) as 

x = kk 'gIn «()xo, kESO(p), k 'ESO(q) . 

The matrices gIn «() form the one-parameter subgroup, 
which is denoted by B. We have 

S: _ I = SO(p)SO(q)Bxo ' 

Therefore, 

SO(n) = [SO(p) XSO(q) ]BSO(n - 1), n = p + q. 
(10) 

In order to obtain polyspherical coordinates on S ; _ I 
we have to multiply the lhs and rhs of Eqs. (9) by exp irPj' 

j = 1, ... ,n, correspondingly. We obtain that S; _ I 
= [U(p) XU(q) ]BZo, where Zo = (0, ... ,0,1). Therefore, 

U(n)=[U(p)XU(q)]BU(n-l). (11) 

In the same way we show that 

Sp(n) = [Sp(p)XSp(q)]BSp(n -1). (12) 

In fact, the decompositions (4), (6), and (8) are special 
cases of the decompositions (10)-( 12) withp = n - 1. 

III. INVARIANT MEASURE AND LAPLACE OPERATOR 

The groups SO (n), U (n), and Sp (n) will be denoted by 
the symbol G; the subgroups SO(p) XSO(q), U(p) XU(q), 
and Sp (p) X Sp (q) will be denoted by H; and the subgroups 
SO(n - 1), U(n - 1), and Sp(n - 1) will be denoted by K. 
Then the decompositions (10)-(12) can be written as 
G = HBK. The spheres Sn _ I in real, complex, and quater­
nion spaces are the quotient spaces G I K. The invariant mea­
sure on group G can be represented as a product of the invar­
iant measure on S n _ I = G I K by the invariant measure on 
K. The invariant measure on S n _ I , expressed in spherical or 
polyspherical coordinates, is well known. I If elements gEG 
are represented asg = hgln «()k, hER, kEK, then the invar­
iant integral on G can be written in the form 7 

Lf(g)dg = c L 11712 if(hgln «()k )Dpq «()dh d() dk, 

(13) 

where dg, dh, and dk are the normalized invariant measures 
on G, H, and K, respectively, and 

D «() =sinrp - I ()cosrq - I () pq , 

where r = 1 for G = SO(n), r = 2 for G = U(n), and r = 4 
for G = Sp(n). The constant c in (13) is 

c = 2r(rpI2)r(rq!2)/r(r(p + q)!2) . (14) 

Formula (13) has to be changed for G=SO(n) and 
p = n - 1. The explicit expression for the invariant integral 
in this case is shown in Ref. 1. 
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The Laplace operator An on S ~ _ I • expressed in poly­
spherical coordinates. is well known I: It can be written as 

An =Dp-;I«(J) :e Dpq«(J) :e + sin- 2 (JAp 

(15) 

where Ap and Aq are the Laplace operators on 
S: _ I and S: _ I' respectively. 

We can consider S;-_ I and S ~ _ I as the spheres S fn _ I 
and S:n _ I' respectively. Therefore. the Laplace operators 
on S;-_ I and S ~ _ I are obtained from (15) by replacing Ap 
and Aq by Arp and A rq • correspondingly. 

IV. HK-SPHERICAL FUNCTIONS OF THE GROUP G 

Let T be an irreducible unitary representation of G 
which has class 1 with respect to K and H. If 10K ) is a 
normalized vector. invariant with respect toK. and IOH) is a 
normalized vector. invariant with respect to H. then 

(OH I T(g) 10K ) =qJ IJ.K(g) 

is the HK-spherical function of T. It is clear that 

qJ IJ.K(hbk) = qJ IJ.K(b). hEll. bEB. kEf(. 

The usual spherical function qJT (that is. the spherical func­
tion qJ ~K) has the property qJ T ( e) = 1. where e is the unit 
element of G. For qJ IJ.K we have qJ IJ.K(e) = (OH 10K ), The 
relation 

qJIJ.K(g) =qJfK(g) =qJ~H(g-l) 

= (OKIT(g-I)IOH) 

holds, where Sis the representation contragradient to T. We 
also have 

IqJIJ.K(g)I<I. 

L qJIJ.K(gh)dh = (OHIOK)qJIJ.H(g). 

L qJIJ.H(gk)dk = (OHIOK)-lqJIJ.K(g) . 

Let L 2(B) be the Hilbert space of functions f on the 
interval (0. 1T/2). with the scalar product 

('T/2 

(fIJ2) =c Jo fl«(J)f2«(J)Dpq «(J)d(J. 

Then for fEI. 2(B) we have the expansion 

f«(J) = IaTqJIJ.K(gln«(J»). (16) 
T 

where the sum is taken over all nonequivalent irreducible 
representations of G having class 1 with respect to K and H 
and 

The Plancherel formula 

Ilfl12 = I (dim n- l la T l2 (18) 
T 

holds. Formulas (16)-( 18) are easily derived from the Pe­
ter-Weyl theorem. 
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Let Tnow have class 1 only with respect to the subgroup 
K. The basis elementsfj of Sec. I will be denoted by IM.a). 
where M are the highest weights of the irreducible represen­
tations D M of H and a labels basis elements of carrier spaces 
of these representations of H. The matrix element 

tIt::'~(g)=t~a.O(g) = (M.al T(g) 10K ) (19) 

is an HK-associated spherical function of the representation 
T. It is clear that t ~a.o (hbk) = t ~u.o (hb). We have 

tIt::'~(hb) =D:o(h)tItgK(b). (20) 

where t ItgK(b) does not depend ona andD:o (h) is a usual 
associated spherical function of the representation D M' 

We have 

(t It::'~*qJ fK) (g) = L t It::'~ (gl)qJ fK(gl- Ig)dg1 

= (dim n-ltIt::'~(g)8TS' 

Moreover. the convolution with qJ IJ.K maps L 2 (G / H) into 
L 2( G / K). For this reason. qJ IJ.K is called an intertwining 
function8

•
9 on G. The relation 

L t It::'~(gh)dh = (OHIOK)t It::'~(g) 
holds. 

With the help of the Peter-Weyl theorem it is easy to 
prove that 

L ItIt::'~(g)12dg= (dim n- I
• 

This formula and Eq. (13) imply that 

11T!2 T.HK 2 dim DM 
C It Mo (gln(8»)1 Dpq«(J)d(J=. , 

o dim T 

where c is given by Eq. (14). 

V. HK-SPHERICAL FUNCTIONS OF SO(n) 

(21) 

Only the irreducible representations T m = T!,o(n) of 
SO(n) with the highest weights (m.O .... ,Q) have class 1 with 
respect to K = SO (n - I). If m is even. then T m has class 1 
with respect to H = SO (p) X SO (q) . We have the decompo­
sitions l 

m 
T ~ TSO(n-l) 

mISO(n-l) = £.. 1 • 
1=0 

T - ~ (TSO(p) TSO(q» 
mISO(p)XSO(q) - £.. r ® s • 

r,S 

where the sums are taken over non-negative integral values 
of rand s such that 

r+s<m. (_I)r+s-m=l. 

For our case formula (20) can be written in the form 

t '[';s~~)O (hh 'b) = D ~o (h)D po (h ')t 7';X~(b) • 

hESO(p). h 'ESO(q) • (22) 

where D ~o (h) is a usual associated spherical function. I 
Function (22) is an eigenfunction of the Laplace opera­

tor (15) with the eigenvalue - m (m + n - 2). Since 

ApD~o(h) = -r(r+p-2)D~o(h). 
AqDpo(h') = -s(s+q-2)D po (h'). 
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operator (15), when acting on function (22), then leads to 
the differential equation 

[sini-pocosl-qo~sinp-I Ocosq-I O~ 
dO dO 

_ r(r+p-2) _ S(S+q-2)]U(0) 
sin2 0 cos2 0 

= -m(m+n-2)u(0), n=p+q (23) 

for t'(':sf§(gln (0»). This function is continuous at the point 
0= 0. The solution ofEq. (23), continuous at this point, has 
the form 

u (0) = sin' 0 cosS OP ~~-_I ,~p~]~ - I + ql2) (cos 20) . 

Therefore, 

t '(':X§(gln (0») = c';;u (0) . 

(24) 

In order to find the constant c';; we have to take Eq. (21 ) into 
account, which in our case can be written as 

c f'l2lc';;U(0)12Sinp-I Ocosq - I OdO 

= (dim T~O(P»(dim T~O(q»(dim T~O(n»-1 , 

Substituting expression (24) for u(O) and the expression for 
dimensions of the representations, we obtain I c';; I. The basis 
elements IM,a) in ( 19) are defined uniquely up to constants 
aM' laMI = 1. Therefore, we can assume that c,;;>O. As a 
result, we obtain 

t '(':sf§(gln (0») 

= N sin' 0 coss Op~~-_I ,+-P~7~ - I + ql2) (cos 20), (25) 

where 

N _ [r(m + r+s + n - 2)/2)r(m - r-s+ 2)/2)f3(p - l,q - 1)(2r+ p - 2) 

2r(m + r-s + p)/2)r«m - r+s+ q)/2)P(p12,q/2)rI.s!(m + n - 3)! 

X (2s+ q- 2)(r+p - 3)!(s+ q- 3)! ]
112 

(26) 

For HK-zonal spherical functions we have the expression 

<pHK(O)=~[ r(m+p-2)/2)r(m+2)/2)(n-3)!m! ]112 
m 2 r(m + p)/2)r(m + q)12)P(p12,q/2)(m + n - 3)! 

X P ~/2 I + p/2, - 1 + q/2) (cos 28) . 

VI. HK-SPHERICAL FUNCTIONS OF U(n) 

Only the irreducible representations of U(n) with the 
highest weights (m,O, ... ,O,m'), m>O>m' have class 1 with 
respect to K = U(n - 1). We denote these representations 
by T mm' == T ~;:J. We have the decompositions 

T '" TU(n-l) 
mm'jU(n-l) = ~ II' 

m;;.J;;.O;;,}';;'m' 

(28) 

and 

T -"(TU(P) TU(q» 
mm'jU(p)XU(q) - £... ,r ® ss' , 

(29) 
p+q=n, p#l, q#l, 

where the summation is carried out over the highest weights 
(r,O, ... ,O,r') (s,O, ... ,O,s') of irreducible representations of 
U(p) XU(q), for which 

r+r'+s+s'=m+m', r-r'+s-s'<m-m'. 
(30) 

In particular, T~<;:'> has class 1 with respect to H 
= U(p) XU(q) if and only ifm = m'. 

1222 

If q = 1, then instead of (29) we have 

Tmm'jU(n-I)XU(\) = I (T~,(n-I) 
m>s>O>s'>m' 

® T~(~)m'_s_s')' 

Formula (20) for U(n) has the form 

t mm'.HK (hh 'b) D'" (h)DSS' (h ')tmm',HK (b) ("',ss')O = aO po (,r,ss')O , 

hEU(p), h 'EU(q) (31) 
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(27) 

if P# 1, q# 1 and the form 
tmm',HK(hh 'b) - D /I' (h)e- i(/ + I' - m - m')¢>t mm"HK(b) (lI',a)O - aO (In 0 , 

hEU(n - 1), h' = ei
¢> (32) 

if p = n - 1, q = 1. 
The function t Z}r;'gK (b) from (32) does not depend on 

the subgroup U( 1) of the group H = U(n - 1) XU( 1); 
therefore, it is really the function t Z}r;,§K (b). 

Using the results of Ref, 10, we prove that function (31) 
is the restriction onto S ~ _ I = S:n _ I of a homogeneous 
harmonic polynomial of degree m - m'. Therefore, (31) is 
an eigenfunction of the operator a2n with the eigenvalue 
-(m-m')(m-m'+2n-2). Since D;o(h) and 

D p~ (h ') are eigenfunctions of the operators a2P and a2q , 
respectively. we then obtain the differential equation 

[
sin I - 2p 0 cos 1 - 2q 0 ~ sin2p - 1 0 cos2q - 1 0 ~ 

dO dO 

_ J(J+2p-2) _)'(J'+2q -2)]U(0) 
sin2 0 cos2 0 

= - (m - m')(m - m' + 2n - 2)u(0) (33) 

for t '(',.,;:;1,~(gln (0»), where J = r - r', J' = s - s'. In order 
to obtain the differential equation for tZ}r;,§K(gln (0») we 
have to replace)' (J' + 2q - 2) by S2;p by n - 1; and q by 1, 
s = I + /' - m - m'. 

Comparing the differential equation for the function 
tZ}r;,§K(gln (0»), K = U(n - 1) with Eq. (23), we find that 
this function satisfies the differential equation for the func­
tion tZ}=r:;~;(gl.2n (0»), H = SO(2n - 2) XSO(2), 
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K = so (2n - 1), corresponding to the group SO (2n). Re­
peating the reasonings of Sec. V for the group U(n), we 
obtain that 

= [( dim T~O~2::n (dim T~,(n - \)] 1/2 

X [(dim T~~,»(dim n~(/~n- 2»)] -1/2 

X t SO(2n).m-m',HK(g (0») (/ - 1',s)O 1.2n' (34) 

where K = U(n - 1) for the group U(n) and 
K = SO(2n - 1), H = SO(2n - 2) XSO(2) for the group 
SO(2n). 

Using the formulas for dimensions of representations in 
(34), we obtain 11.12 that 

t~/i~)bmm"KK{gln (B») 

= N sin/ - /' 0 cos/+ I' - m - m' 8 

Xpr,;,=~' + n-2.1+ I' - m- m')(cos 20) , (35) 

where 

N = [en _ 2)(1-1' + n _ 2) m!( - m')!(m -1)!(I- m' + n - 2)1(1 + n - 3)!( -I' + n - 3)! ]112, 
(I' - m')!l!( - l')!(m -/' + n - 2)!(m + n - 2)!( - m' + n - 2)! 

In particular, for the zonal spherical function of the representation T mm, ofU(n) with respect to the subgroup K = U(n - 1) 
we have 

tp ~~,(gln (8») = [(n - 2)!m!!(m + n - 2)I]cos - m - m' BP~ - 2. - m - m')(cos 20) . 

Comparing the differential equations (23) and (33) we find that 

(36) 

U() 'HK 1m m-m' 1m d 1m ss' SO(2) _ 'HK t n ,mm, (B) = t " ,m ,m, B 
[ 

(d' TSO(2n) ) (d' rU(p» (d' TU(q»] 1/2 

(rr',ss')0 (gIn ) (dimT~~»(dimT;~(~P»(dimT~(;,q» (r-",s-s)O (gl.2"( }), (37) 

where H = U(p) XU(q), K = U(n - 1) for the group U(n) and H = SO(2p) XSO(2q), K = SO(2n - 1) for the group 
SO(2n). In particular, the HK-zonal spherical functions of the groups U(n) and SO(2n) are related by the formula 

mU(n),HK(g (0») = (dim T SO(2n»1/2(dim TU(n) )-1/2m SO(2n).HK(g (0») 
'T m.-m In 2m m,-m.". 2m l,2n • 

Let us note that the multiplier in Eq. (37) is equal to 

N _ [ {3(m + n - 1, - m' + n - l){3(p,p - 1){3(q,q - l)m!( - m')!(s - s'ller - r')l ]1/2 

- 2{3(r + p - 1, - r' + p - 1 ){3(s + q - 1, - s' + q - 1 ){3(n,n - l)(m - m')!s!r!( _ s')!( _ r')l . (38) 

VII. HK-SPHERICAL FUNCTIONS OF Sp(n) 

Only the irreducible representations of Sp (n) with the 
highest weights (m,m',O" .. ,O), m>m'>O have class 1 with 
respect to K = Sp (n - 1) , We denote these representations 
by T mm, =Ts.::~?). 

If p > 1, q> 1, we then have the decomposition 

T - ~ (TSp(P) TSp(q» 
mm'ISp(p) XSp(q) - L rr' ® ss' , 

where the summation is carried out over the highest weights 
(r,r',O, .. "O) (s,s',O, ... ,O) of irreducible representations of 
Sp(p) XSp(q), for which 

m - m'<"r+ r' +s+s'<"m + m', 

Ir- r' -s+s'l<"m - m'<"r- r' +s-s', 

(_l)m+m' = (_I)r+"+s+s'. 

If q = 1, then instead of the highest weights (r,r',O, ... ,O) 
(s,s',O, ... ,O) we have the highest weights (r,r',O, ... ,O) (s). 

Formula (20) for Sp(n) has the form 

t (,.,,;:;7.~{3)0 (hh ' b) = D;o (h)D iJ~ (h ')t (,.";,;~~ (b) , 

hESp(p), h 'ESp(q) . (39) 

The function (39) is the restriction on S ~ _ I = S:n _ I 
of a harmonic polynomial of degree m + m' in real parts of 
quaternion variables; therefore, it is an eigenfunction of the 
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Laplace operator A4 " belonging to the eigenvalue 
- (m + m')(m + m' + 4n - 2). Using formula (15) for 
A4n , we obtain the differential equation 

[sin l - 4P 8 COSI- 4q O~ sin4p - 1 8 COS4q - 1 O~ 
dB dO 

_ J(J + 4p - 2) _ I'(I' + 4q - 2) ]u(B) 

sin2 0 cos2 0 
= - (m + m')(m + m' + 4n - 2)u(0) (40) 

for t (,.";:;.~~(gln (0»), where J = r + r', I' = s + s'. 
Comparing the differential equations (23) and (40) we 

find that 

tm.:::;"om'.HK(gln (0») 

= [(dim T~.?~4::'~)(dim T;~(P»(dim T~r.(q» ]1/2 

(dim TSP(~!» (dim T SO(4p» (dim T SO(4q» 
mm r+ ~ s+ s' 

(41 ) 

for q> 1, where H = Sp(p) XSp(q), K = Sp(n - 1) for 
Sp(n) and H = SO(4p) XSO(4q), K = SO(4n - 1) for 
SOC 4n). In particular, 

tp s.::~?).HK(gln (0») = (dim T~O~4::,~) 1/2(dim Ts.::~?» -1/2 

Xtp~O~4;~,HK(gl.4n(O»). (42) 

The multiplier in Eq. (41) is given by the formula 
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N = [ {3(m + 2n - I,m' + 2n - 1 )B(2p - 1,2p){3(2q - 1,2q) (m' + 2n - 2) (2p - 2) (2q - 2) 

{3(r + 2p - 1,r' + 2p - 1 ){3(s + 2q - l,s' + 2q - 1){3(2n - 1,2n)(r' + 2p - 2)(2n - 2) 

(r + r')!(s + s')!(r + r' + l)(s - s' + l)(m + l)!m'! ] 112 X . 
(s' + 2q - 2) (m + m')!(m - m' + 1) (r + 1 )!r'!(s + 1 )!s'! 

For q = 1 we have 

t ~~;~~;m·.HK(gln ({)) = Nt ~?~4~:;~ + m·.HK(gl,4n ({)) , 

where 

N = [{3(m + 2n - I,m' + 2n - 1 )(m' + 2n - 2)(r + r')!(r - r' + l)(m + 1)m'!(4n - 6)! 
p(r+ 2n - 3,r' + 2n - 3)(r' + 2n - 4)(m + m')!(m - m' + l)(s + l)(r+ 1)r'! 

(2n-l)! ]112 X . 
(4n - 2)1(2n - 5)! 

r 

(43) 

(44) 

(45) 

Comparing the differential equations (33) and (40) we 
find that 
tSp(n).mm·.HK(g ({)) 

(rr.ss')O In 

_ [ (dim T~~~:",)(dim T~~(P» 

between CGC's for these groups, We express CGC's in terms 
of scalar factors with respect to subgroups, For this reason, 
below we consider scalar factors of the group G with respect 
to the subgroups Hand K. 

- (dim TSp(n» (dim T U (2p) ) 
mm' (r+ k. - r + k) 

X (dim T~(q» ] 112 

We can factorize CGC's of the group G into the product 
of scalar factors of G with respect to Hand Kby the CGC's of 
Hand K. This factorization and Eq. ( 13) lead to the formula 

(dim T~(~ql, _so + I) ) 

X t ~r(!t':',; ;i:! I, _ s' + I)O(gl,2n (()) , (46) 

where k and I are integers such that 

r - r' + s - s' + 2k + 21 = m - m'; 

H = Sp(p) XSp(q), K = Sp(n - 1) for Sp(n); and H 
= U(2p) xU(2q), K = U(2n - 1) for U(2n), 

VIII. RELATIONS BETWEEN SOME CGC's OF THE 
GROUPS SO(n), U(n), AND Sp(n) 

whereb =gln ({);M,M',andM" are the highest weights of 
irreducible representations of H; and * denotes a complex 
conjugation. 

Relations between HK-associated spherical functions 
for the groups SO(n), U(n), and Sp(n) imply relations 

I 

Writing relation (47) for the associated spherical func­
tions from Eq. (37), we obtain the relation 

m2m; I mm' I U(n) ) 
(r2r;,s2s;) (rr',ss') U(p) XU(q) 

I U(n) )* 
U(n - 1) 

m2-m; I m-m' I SO(2n) )* 
o 0 SO(2n - 1) 

( 
ml-m; 

X (r I - r; ,S I - s; ) 
m2 - m; I m - m' I SO(2n) ) 

(r2 - r;,s2 - s;) (r - r',s - s') SO(2p) XSO(2q) , 
(48) 

where N, N', and N" are expressions (38) taken for the representations T~::;'>, TU(II)" and TU(II)" respectively, 
1»./11 1 In:",:! 

In the case of the groups Sp (n) and SO ( 4n) we obtain, from the spherical functions (42), that 

( 
mlm; m2m; I mm' I Sp(n) ) 

(rlr; ,SIS;) (r2r;,s2s;) (rr',ss') Sp(p) XSp(q) 

(
mlm; m2m; I mm' I Sp(n) )* 

X 0 0 0 Sp(n-l) 

(
m + m' m,_ + mz' I m + m' I SO(4n) )* =N'N"N- I I 0 I 

o 0 SO(4n-1) 

( 
ml+m; 

X ('I+r;,sl+s;) I m+m' I SO(4n) ) 

(r2+r;,s2+s;) (r+r',s+s') SO(4p)XSO(4q)' 
(49) 
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where N, N', and N" are expressions (43) or (45) for the 
representations TSp(?) TSp(n) and TSp(n) respectively. 

mm' mimI' m:2;mi' 

Using the concept of dual groups, Alisauskas13 has 
found similar relations for CGC's; however his CGC's are 
not attached to some bases. Our CGC's are related with 
bases. The HK-associated spherical functions can be taken as 
these bases. Moreover, we explain the structure of coeffi­
cients relating CGC's of different groups. 

It is very important to generalize relations (48) and 
( 49) for more general representations of the groups SO (n), 
U (n), and Sp (n): It would give us a chance to apply the 
powerful results found by Biedenham, Louck, and others 
(see Refs. 14 and 15 and the literature quoted therein) to the 
CGC's ofthe groups SO(n) and Sp(n). 
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In the case of a differential operator containing a gauge field, coefficients of a new heat kernel 
expansion obtained in a preceding paper (A. P. C. Malbouisson, M. A. R. Monteiro, and F. R. 
A. Simao, CBPF-NF-024/88, to be published in J. Math. Phys.) are calculated. The prior 
expansion allows it to be shown that the meromorphic structure of the generalized zeta 
function is much richer than was known previously. Also, an application to anomalies is done, 
resulting in a general formula for the arbitrary dimension D. The special cases D = 2 and 
D = 3 are investigated. 

I. INTRODUCTION 

In a previous paper I an asymptotic expansion was ob­
tained for the diagonal part of the heat kernel associated with 
a given elliptic operator H of order m, based on the connec­
tion, through a Mellin transform, between the heat kernel 
and the Seeley's kernel K(s;x,y) 2 of the complex sth power 
Jr of the operator H and the meromorphic properties of 
K(s;x,x). We recall that "heat kernel" means the solution of 
the "heat equation" 

a 
- F(t;x,y) = HF(t;x,y), at (1.1 ) 

where t is a "time" or "temperature" parameter and x and y 
are, in the case we are interested in, points of a D-dimension­
al compact manifold M. The Seeley's kernel is defined for 
Re(s) < - D 1m such that 

H,/(x) = JM dy K(s;x,y)f(y)· 

The expansion mentioned above is obtained by analytic 
continuation of K in the variable s and reads as 

F(t;x,x) = - f tl(d¢» 
1=0 ds s=1 

- It (j- D)/mr( D,:- j)Rj (x). (1.2) 
J 

The sum overj is such that we takej = 0,1,2, ... exclud­
ing the terms such that (j - D)/m = 0,1,2, ... and R j (x) is 
the residue of K(s;x,x) at the pole s = (j - D)/m: 

R.(x) = 1 ( (dA 
) im(21T)D+ I Jilsil = I Jr 

XA (j-DJ/mb_m_/x,S,A), (1.3 ) 

where r is a curve coming from 00 along a ray of minimal 
growth, clockwise on a small circle around the origin, and 
then going back to 00. The quantities b _ m _ j are obtained 
from the coefficients of the symbol of H (see Sec. III) and 
lis II = 1 means that the set of variables {S} is constrained to 

be at the surface of the unit sphere in D-dimensional space. 
The function ¢>(s) is introduced to account for the coinci­
dence of the poles of the gamma function r ( - s) and those 
of K(s;x,x) at the positive integers I and is defined by 

r( - s)K(s;x,x) ;::;:,¢>(s)/(s - /)2 (1.4) 

for s;::;:,l. 
As was remarked in Ref. 1, the expansion ( 1.2) is rather 

different from de Witt's ansatz currently used.3 In particular 
( 1.2) contains fractionary powers at even dimension and 
even operator order, coming from the second term in the 
expansion. 

In the rest of the paper we explore some consequences of 
the new expansion ( 1.2). In Sec. II we show that the general­
ized zeta function t(s) has an infinity of poles at real values 
of s. In Sec. III we calculate the coefficients of the leading 
and next-to-Ieading terms in (1.2). In Sec. IV we obtain a 
general formula for the anomaly in arbitrary dimension D 
and particularize to the special cases D = 2 and D = 3. 

II. MEROMORPHY OF THE GENERALIZED ZETA 
FUNCTION 

One of the implications of the series ( 1.2) is of a math­
ematical character and concerns the meromorphic structure 
of the Hawking's generalized zeta function,4 which is much 
richer than the structure known previously. This may be 
easily seen as follows. 

The generalized zeta function is written as 

t(s) = _1_ t dtlS-1JdDX F(t;x,x) + Q(s), (2.1) 
res) Jo 

where Q(s) converges for all s. 
Let us take D = 4 and consider an operator of order 

m = 2. ReplacingF(t;x,x) in (2.1) by the series (1.2) we see 
that the first term of the expansion gives no poles as a result 
ofthe factor lIr(s) in front of the integral in (2.1). From 
the second term of the expansion we have the sum 
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__ I_ Ir (4-J)R
j
(X) (dttS+ j/2 - 3, (2.2) 

res) j 2 Jo 
which gives poles at s = 2 - JI2 for integer values of J and 
(j - 4)/2#0,1,2, .... 

Thus the poles of the generalized zeta function are not 
situated only at s = 1 (j = 2) and s = 2 (j = 0). We also 
have poles at s = ~ (j = 1) and s =! (j = 3); forj = 5,7, ... 
we have an infinity of poles in s at the negative half-integers. 
There are no poles at negative integers, as a result of the 
vanishing of the residues of K(s;x,x) at those values.2 The 
residues at the poles are given by the corresponding coeffi­
cients - [lIre2 - j/2)] r( 4 - j)/2)Rj (x) in (2.2). 

III. APPLICATION TO A DIFFERENTIAL OPERATOR 

Let us consider a differential operator H of order m = 2, 

H= - [gI'1'(x)(alL + BIL(x»)(a1' +B,,(x») +P(x)], 
(3.1 ) 

acting on a D-dimensional compact manifold M and en­
dowed with a metricgIL1' (x) (/-L,v = 1,2, ... ,D). In (3.1) P(x) 
is a nondifferential operator and 

(3.2) 

where AIL (x) and g are, respectively, the gauge field and a 
coupling constant (not to be confused with the metric tensor 
or its determinant). The quantity 1/

IL 
(x) contains informa­

tion about curvature and torsion. The usual convention of 
summation over repeated indices will be adopted. 

In Seeley's notation2 the operator H must be written in 
the form 

alai 
H = J; (- i)laIH!,"I"'a (x) ,(3.3) 

, D a 
{a lal<2 axf'" ·axD

D 

where lal = al + ... + aD' 

Expanding (3.1) and comparing with (3.3) we obtain 
the set of coefficients H !;,I, 'aD (X): 

H ~~~ 'aD (X) = H 6~)'01(IL)0" '01(1')0' "0 (X) = gIL1' (X), 
(3.4a) 

H~:) .. ao(X) =H6
1
)'OI(1')"'0 = -2igIL,,(x)BIL(X), 

(3.4b) 

- gIL" (X) (2a ILB v + BILB V) - P(X). 
(3.4c ) 

Now, to calculate the coefficients of the second term of 
expansion (1.2) we need the quantities b _ 2 _ j [see Eq. 
( 1.3)], which are expressed in terms of the coefficients 
a2 _ k (x,s) of the symbol of H2, 

a (x r) - ~ H12-k l r a , ••• r ao 
2 - k ,~- L a L •• ·aD~ 1 ~ D , 

lal = 2 - k 

by the following set of equations: 

1=0: 

b _ z[a2 (x,S) - A] = 1, 
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(3.5) 

(3.6a) 

withj<i, j + k + lal = I. (3.6b) 

The coefficients a2 _ k are easily obtained from Eqs. 
(3.4): 

az(x,s) = gIL1' (X)SILS
1'= lis 11 2

, 

al(x,s) = - 2igIL1' (x)BIL(X)sV, 

(3.7a) 

(3.7b) 

ao(x,s) = -gIL1'(x)(aILB1'-BILB1') -P(x). (3.7c) 

Then the first two quantities b _ 2 _ j that we need for 
calculating the leading and next-to-leading contributions in 
the second term of expansion (1.2) are given by 

b_z(x,s,A.) = (1Isllz-A)-I, (3.8) 

2is·a lis 112 
(11s112 _A)3' 

(3.9) 

where the scalar product is defined with the metric gIL1' (x). 
From (1.2), (1.3), (3.8), and (3.9), the contributions 

that are coefficients of the powers t - D IZ and t( I - D)12 , are 
given, respectively, by 

(3.11 ) 

where we take the integration path r as the curve coming 
from - 00 along the negative real axis, then clockwise along 
the unit circle around the origin, and then backward to - 00 

along the negative real axis. Since we must restrict the S's to 
the surface of the unit D-dimensional sphere, the last integral 
in (3.11) vanishes; to avoid the singularity at..t = 1, we in­
troduce a regulatorp> 1.z Then (3.10) and (3.11) become 

X 2S1 -[ 'n(1TD)f - 00 dAIAI- D12 

2 -I p-..t 

_ i f -". dfJei(i - DI2)()], 
J". p-e'() 

(3.12) 
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(D-l) -r -2- R1(x) 

- - r(D - 1) 1 J dg 
2 (211")D+I 

[ "0( 11"(1 - D) )f -00 dl{ II{ 1(1 - D)/2 
XB·g - 21S1 

2 -I (p_l{)z 

(3.13 ) 

In (3.12), (3.13), and the subsequent formulas, the integra­
tions over the g's are constrained to the unit sphere 

IIg 1I=~g,uv(x)g,ugv = 1. 
In dimension D = 4, making the change of variables 

p - IIZei()IZ = ei4>, the integrations over I{ and ° may be per­
formed. The results, after suppression of the regularization, 
are 

and 

- r(2)Ro(x) = _1-4 J dg 
2(211") 

- r(~)RI(X) = - r(~)~Jdg B·g. 
2 2 2(211") 

(3.14) 

(3.15 ) 

Analogously, in dimension D = 2, the coefficients of the 
two first powers of the second term in ( 1.2) (powers t - 1 and 
t -1/2, respectively) are obtained from (3.12) and (3.13): 

- r(1 )Ro(x) = _1_2 J dg, 
2(211") 

(3.16) 

- r(l..)RI(X) = - r(l..)-I-· Idg B·g. (3.17) 
2 2 2(211")2 

As an example, we calculate the coefficients (3.16) and 
(3.17) in the Penrose compactified two-dimensional Min­
kowski space,5 which has the metric 

g,uv =!G ~). 
In this case the unit sphere Ilg II = 1 is the section ofhyperbo­
la depicted in Fig. 1. Using polar coordinates (r,O) and the 
well-known formula for the induced metric on a (D - 1)­
dimensional surface embedded in D-dimensional metric 
space, it is easy to see that the integration on the "surface" 
IIg II = 1 reduces simply to integration over ° between the 
limits °1, 0z and 0 1 + 11", 0z + 11": 

i i
()2 i()2+7r 

dg = dO + dO, 
11';-11=1 (), (),+7r 

with 

01 = arctan (1!r), 

0z = arctan r. 
We obtain 

- r(1)Ro(x) = [1!(211")2](OZ - ( 1 ), 
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(3.18a) 

(3.18b) 

(3.19) 

~I 

FIG. 1. We show svariablessubmitted to the constraint g"vS "5 v = I in the 
Penrose compactified two-dimensional Minkowski space.' 

(3.20) 

where nand E are the elliptic integrals of the third and 
second kinds, respectively; Fis the generalized hypergeome­
tric series. 

IV. ANOMALIES 

In this section we apply expansion ( 1.2) to study anom­
alies using the heat kernel method.6 We borrow some of the 
notation and methods employed in a recent work by Cognola 
and ZerbinC since they are suitable for our purposes. Using 
the generalized zeta-function regularization, the anomaly 
may be written in the form 

. { 1 il 

A= -qhmTr (X+ Y)-- dtt s
-

I 

s-o res) 0 

X kU;X,X) - Po(x,x) n, (4.1) 

where q = - 1, !, or 1 for fermions, neutral or charged bo­
sons, respectively; X = XI + X z and Y = Y1 + Yz are opera­
tors satisfying the relation 8K(J) = (8JXI + YI8J)K 
+ K( Yz8J + 8JXz ) and K(J) is such that H(J) ex: K(J) for 

bosons and H(J) = K2(J) for fermions, whereJis a classi­
cal source. Here Po is the projector onto the zero modes. For 
the axial anomaly, X = Y = ir5' 

In (4.1) we replace F( t;x,x) by ( 1.2); after some simple 
manipulations we see that the sole contribution to the anom-
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aly comes from the coefficient of the power to, giving, for 
arbitrary dimension D, 

A= -qTr{(x+ n[ -(:)Is=o -Po(X,X)]). 

(4.2) 

Now, from (1.4) and the formula 

r(z) = r(z + 1+ 1) IT 1 
z+l n=(z+l-n 

we have, for integer /"~O, 

dt/J 1 ( - 1)1 - = - 2---K(l;x,x) , 
ds s=1 I! 

(4.3) 

where the Seeley's kernel for integer I is2 

K(l;x,x) = } fds roo dt 
( - I) 2(21T)D Jo 
X t Ib _ 2 _ 2/- D (x,s,tei

/}). (4.4) 

Thus taking arg A. = () = 1T in (4.4) the anomaly may be 
obtained for arbitrary dimension D from (4.2), with 

dt/J 1 - 1 f loo - =-- ds dtb_ 2 _ D (x,S, - t). 
ds s=O (21T)D ° 

(4.5) 

Next we apply (4.2) to the cases D = 2 and D = 3. The 
case D = 3 is particularly interesting since, in spite of the 
well-known difficulties in defining the matrix Y5 in odd di­
mension,8 certain aspects of even-dimensional axial anomaly 

could appear in odd-dimensional field theories (see Niemi 
and Semenoff 9 and the references therein). This results 
from the fact that the connection between zero modes of 
Dirac operators and non triviality of the background field 
topology is valid for any value of D, as shown by Callias.1O 

Moreover, there is a technical difficulty to (formally) 
calculating anomalies in odd dimension using the de Witt 
ansatz in the heat kernel method which is not present with 
our expansion: When one uses the de Witt ansatz for expand­
ing F(t), the anomaly depends on the coefficient of the pow­
er ~/2, which does not exist for odd values of D, while with 
our expansion the anomaly depends directly on the coeffi­
cient of the zeroth power of t, given by (4.5), for any even or 
odd dimension. 

Calculations for a general coordinate-dependent metric 
are extremely involved. Here, we restrict ourselves to the 
simpler situation of a symmetric, coordinate-independent 
metric tensor gllv' In this case we obtain 

for D= 2: 

A2 = ~ Tr{(X + nf dS [4s ll (aIl B v )sV 
(21T) 

+ igllv (ailB v _ BIlB V) 

+P(x) +2(B'S)2]}, 

for D= 3: 

(4.6) 

A3 = ~ Tr{(X + nfds [ - gl'V(all avB (7)S(7 + 2i(B's)(gllv(a IlB v - BIlB V) 
(21T) 

+ P(x») - 2iBIl{aIl B V)Sv + iSPgpu(ap a
p B (7 + BP all B (7 + (ap- BP)B '1 

+ispaIlP(x)- ~(B'S)3- ~sIlSu(B's)(apB(7)- 136iSIlSvS(7(apavBU)]}. (4.7) 

In the Penrose compactified two-dimensional Minkow­
ski space,5 (4.6) gives the result 

where the angles ()(' ()2 are given by (3.18a) and (3.18b) and 
Bo, B( are the components of Bp (x) given by (3.2). 
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For his metric space construction Meyer incorrectly derived several results. Meyer's proofs are 
corrected or disproved by counterexamples. The physical relevance of his construction is 
further examined. 

I. INTRODUCTION 

Meyer l has introduced a new boundary for space-time. 
His construction is described as follows: Let (M,g) be a 
paracompact, connected C'''' -Hausdorff manifold with a 
Lorentz metric of signature ( - , + ,oo., + ). Furthermore, 
suppose that the timelike diameter of (M,g) is finite and that 
(M,g) is a distinguishing space-time. The height of a set 
UCMis defined asd( U): = sup{L( y)/yis a causal curve in 
U}, where L( y) is the arclength of y. 

Define D +: M X M ..... R 
(p,q)~d«(I + (p) - I + (q»)U(I + (q) - I + (p»)); 

D - is defined similarly. Then D: = D + + D - is a topologi­
cal metric on M. Denote by JI the manifold topology and by 
fiJ the metric topology of M. When (M,D) is the metric 
completion of (M,D) (with topology g;), aDM: = if - M 
is the D boundary of space-time. 

For this construction Meyer derived several results on 
the topology of space-time. Unfortunately, a majority of 
these results remains erroneous: partly they are wrong and 
partly their proof is not correct. The purpose of this work is 
to correct the wrong proofs and to disprove the wrong state­
ments by counterexamples. Furthermore, I shall sketch a 
generalization of the D boundary to space-times with arbi­
trary timelike diameter and discuss its physical relevance. 

II. CORRECTIONS 
In Theorem 3.1 Meyer states that D is continuous iff JI 

agrees with fiJ. But Meyer's proof that fiJ is finer than JI 
whenever D is continuous is wrong. In "=? (ii)" he claims 
that, given a neighborhood of a point p E M with compact 
closure, the following statement holds for all rEM: If 
I-(r)nI-(p)naU=0 and I-(r)nI-(p)=/=0, then 
there exists qEcl//(aUnI-(p») with qEl+(t) for all 
tEI-(p)nI-(r). [cl// (.) denotes closure in JI topol­
ogy.] Cylindrical two-dimensional Minkowski space 
( 0,1) X S l, - dt 2 + dx2

) provides a counterexample (Fig. 
1) . 

I + (t\) nI + (t2 ) nctti' (aUnI - (p») = 0, so his asser­
tion cannot be correct. Fortunately, Rube has proven that in 
any case fiJ is finer than JI. I sketch her proof, because in 
some applications it might be useful to have a finer metric 
topology than JI which depends only on the causal struc­
ture of (M,g). 

Theorem: Let (M,g) be a distinguishing space-time with 
finite time1ike diameter. Then for every sequence {q,,} in M 
with D( q" ,p) ..... 0 (n ..... 00 ) one has q n ..... P with respect to JI. 

Proof Suppose there exists a sequence {q,,} with 

D(q",p)""'O, but q,, __ p. By taking a subsequence one can 
choose an open neighborhood U of p with compact closure 
contained in some convex neighborhood such that no qn hits 
U. Since I + (qn ) nI - (q" ) = 0, we can assume without loss 
of generality that pEt I + (q" ) for all n. Let y: [0,1] ..... Ube a 
future directed timelike curve with y(O) = p and 
L(yl[O,1/n)j>D(q",p). We have yOln)EI+(qn)' 
Choose a timelike curve A n from q" to y( 1/ n) and denote by 
x" its last intersection with au. If x is a limit point of the x 
there exists2 a causal curve A from x to p. Clearly, x=/=p a~d 
I + (p) CI + (x). To get our contradiction, we show that also 
I+(x)CI+(p). Assume that there exists YEI+(x) 
- I + (p). Let z E I + (x) nI - (y) and 1] a timelike curve 
from z to y. Since I - (z) is a neighborhood of x, we find a 
subsequenceq" and causal curves fromq" viax tozwhich 

k k n" 
can be lengthened by 1] to y. Denote the resulting curves by 
a nk . But then we have D(qn"p»L(ank »L(1]) >0 which 
contradicts D(qn'P) ..... 0. 

Therefore I + (x) = I + ( p) holds, which is impossible 
because (M,g) is distinguishing. 

Proposition 3.7 in Meyer's paper is wrong: He defines a 
CO topology on the space of causal future in extendible curves 
'{J by taking {'{J R (P,Q): = {yly is a future in extendible 
causal curve in R with initial point in P which reaches Q and 
eventually remains in Q}IP, REJI, Q = I + (q), qEM} as a 
basis. In Proposition3.7 he states: "D + is continuous at p iff 
L: '{J ..... R is continuous across the null cone of p." The "only 
if" part is false (Fig. 2). In order that the null geodesic y 
reaches Q = I + (q) (in our example this choice for Q suf­
fices) , it is necessary that q lies in the past of some points on 
y. But then there is a timelike curve A which is in every C () 
neighborhood of y, and L cannot be continuous in y. 

Identify 

FIG. I. Cylindrical Minkowski space. 
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FIG. 2. L is not continuous across the null cone. 

Meyer defines future boundary points (FBP's), but 
they do not exist: P E aDM is said to be a FBP if there is.!" 
causal curve y: [a,b) -+ M, C E [a,b) such that for all !iJ 
neighborhoods U of P there exists to E (a,c) with y(t) E U 
for all t E (to,c). Since y( c) EM, there exists a,.4 -neighbor­
hood V of y( c) with compact closure. Because !iJ is finer 
than ,.4, cL, VC cl II V is a neighborhood of y( c) and, con­
sequently, M - cl '/ V = M - cl '/ V is a neighborhood of P 
in (M,JiJ) which is not hit by any y(t) sufficiently close to 
y( c). A future boundary end point (FBE) is defined similar­
ly, but now c = b is required. For future inextendible causal 
curves FBE's may exist. Past boundary end points (PBE's) 
are defined analogously. 

Assume now that the c-boundary construction of Ger­
och, Kronheimer, and Penrose3 works (our notation is, un­
less explicitly defined, as in this paper). In order to compare 
D boundary with c boundary, Meyer defines the map 
i:(M,9) -+ (Mf,,.4#), 

{

(I'- (p) nM)#, if 1'- (p) #0, 
~ (1'+(p)nM)#, ifl'+ (p) #0, 

0, if 1'- (p) = 1'+ (p) = 0, 

where (Mf,,.4#) ( = Me in Meyer'snotati~n) is the Haus~ 
dorff space resulting from the causal completIOn procedure,' 
and I' - (p): = {q E M / there is a nontrivial future directed 
causal curve in M from q (or with PBE q) to p (or with FBE 
p, if pEa DM) }. I' + (p) and J ' ± (p) are defined analogous­
ly. 

First, note that 0 E£ M f. But this problem can be solved 
by introducing an abstract point e: M'#: = MfU{e}; let 
{e} be open and ,.4'#IMf = ,.4#. 

Second, it remains to check whether 

FIG. 3. Here i is not well defined. (This is preparing the example for the 
three-dimensional counterexample.) 
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FIG. 4. Here i is not well defined (counterexample). 

whenever 1'+ (p) #0 and 1'- (p) #0._ Meyer's proof is 
wrong because he claims that every open !iJ neighborhood of 
1'- (p) nMmust intersect 1'+ (p) nM, which is obviously 
false. By giving a three-dimensional counterexample I show 
that i is ill-defined. First, consider the following two-dimen­
sional example (Fig. 3). We have two sequences of tubes 
{Qn}' {Pn} which connect region III with region I (region 
II, respectively) and accumulate at p. Our metric is 
g: = - dt 2 + /( a) dx2

, where / is a smooth function of the 
angleawith/(a) = 1 (a< -at ora>at ) and/(a) =c/b 
(-ao<a<ao). Here I-({Pn}) is in I+(y)ex, but not in 
1- (A)e", and for {qn} the dual statement holds. Moreover, 
we have I+(y)ex'nI-(A)e" = 0. If we hadpn -+p, qn-+P 
(in JiJ topology), this would imply that i was not well de­
fined, because then I' - (p) M and I' + (p) M could be separat­
ed by two elements of,.4# which have an empty intersec­
tion. However, they do not converge, for a timelike future 
directed curve, starting at Pn' can reach the first tube Qt, 
whence D(Pn,qn )L(Q.) for all n,m. Adding one dimen­
sion as in Fig. 4 we can achieve that the tubes {Qn}' {Pn} are 
spacelike separated, whenever n # m. The sectional view 
(Fig. 5) from above onto t = 0 is a circular area now. The 
tubes are arranged so that their causal shadow~ (in t = 0) 

are disjoint. Now we see that P n -+ P, q n -+ P (in !iJ topology) 
and that the other properties remain unchanged. 

Since our counterexample is a little bit artificial, one 
could consider exclusively space-times in which i is well de­
fined. Therefore we examine the most important of Meyer's 
assertions about i. He claims that i would be continuous. He 
is wrong even when i is well defined (Fig. 6). Here 
i(p) = i(lim P n ) is in A ext, because every subset S of M with 
1'-(p)nM=I-(S) satisfies SCcl//(J'-(p)M), but 

ca usal shadows of 
the tubes 

FIG. 5. Sectional view onto the plane t = 0 in Fig. 4. 
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FIG. 6. Here i is not continuous. (Bold lines do not belong to M.) 

ell, (J'- (p) nM)nel // (A) = 0, so 1+ (S) CA is impossi­
ble. Clearly, i(Pn)Et4 ext for all n, and i is not continuous. 
Meyer states: "The part of the causal boundary which is 
generated by l!J -uniformly continuous curves is homeomor­
phic to the part of the D boundary which has either past or 
future." He is wrong, even if D is continuous (Meyer uses 
this property in his proof) (Fig. 7). In Fig. 7, our metric is 
indicated by some null geodesics. We just have a part of 
Minkowski space, where t<O. At x-O (t>0), the metric 
degenerates so that in the limit all "causal" vectors consist of 
a single line and g(J"J, ) = 1 holds everywhere on M. 
The whole lightIike part of the c boundary does not belong to 
the D boundary, as is easily seen. So there cannot be a bijec­
tion between them. 

III. D BOUNDARY COMPARED WITH PHYSICS 

At first glance, the finite timelike diameter seems to be a 
serious obstruction to physics. Fortunately, by composing D 
with a homeomorphism h: lR-... (a,b) (a,b finite), one can 
save all correct theorems presented here or in Meyer's paper I 
(in Proposition 3.4 therein, one has to compose f with h, 

x = 0 
t = 1 -----~---.."..~--~..,..~"7"111 

t = 0 

FI G. 7. The D boundary is not homeomorphic to the causal boundary. 

1232 J. Math. Phys., Vol. 30, No.6, June 1989 

. . 

X f= 0 
The teeth of the "comb" have a limit 
tooth at x = o. 

FIG. 8. The D boundary is not stable under small metric perturbations. 
(Bold lines do not belong to M. ) 

too). Of course, the hoD topology does not depend on the 
particular homeomorphism h we have chosen, and the modi­
fied D boundary also works in space-times with infinite time­
like diameter. 

Although we could overcome this drawback, the D 
boundary is ruled out by physics (Fig. 8). We see that none 
of the intuitive lightlike boundary points is aD-boundary 
point, because to every Pn there exists a Pm (m > n) and a 
timelike curve from Pm to the space between two teeth of the 
"comb" which cannot be reached from Pn' But by an arbi­
trary small perturbation of the metric in the arbitrary small 
set U we can widen the lightcone in U and thereby achieve 
that every Pn sufficiently close to P can reach the tooth at 
x = O. Consequently, {Pn} becomes a Cauchy sequence and 
paD-boundary point. Since general relativity is a classical 
theory which describes nature only approximately, every 
physically meaningful object must be stable under small 
metric perturbations. This implies that the D boundary can 
only serve as a technical tool. 
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A theory of characteristic classes for complex super vector bundles over supermanifolds is 
developed. Such characteristic classes are proved to fulfill the usual properties, and it is shown 
that, under suitable conditions, they can be represented in terms of supersmooth curvature 
forms. 

I. INTRODUCTION 

This paper is devoted to the development of a theory of 
characteristic classes for (complex) super vector bundles 
(SVB's) by generalizing the construction of the Chern 
classes of smooth complex vector bundles in terms of the 
cohomology of the projectivization of the bundle. Such a 
theory should be relevant to physics, since many techniques 
exploited in supersymmetric gauge theories or in superstring 
theory, mainly in connection with the anomaly problem, ac­
tually involve nontrivial super vector bundles over super­
manifolds and the study of their cohomology ring. I 

We consider supermanifolds in the framework of the 
theory initiated by De Witt and Rogers,2--4 which was given a 
satisfactory setting by Rothstein.5 Even though we shall use 
a particular category of supermanifolds (which were called 
f§ supermanifolds), it should be noticed that the results in 
the present paper could be easily extended to the more gen­
eral setting described by Rothstein, provided that the grad­
ed-commutative Banach algebra B that enters the theory is 
finite dimensional and there is a surjective algebra morphism 
B-+F, where Fis the ground field. 

The resulting category of supermanifolds contains ob­
jects that are topologically richer than Berezin and Kos­
tant's graded manifolds6

,7; this of course reflects On the co­
homology of supermanifolds and on the properties of SVB's 
on them. 

The basic algebraic object in supermanifold theory is a 
real Grassmann algebraBL = (BL)ofB (BL ). withLgener­
ators. (In dealing with complex SVB's we shall also use the 
complexification of BL,CL = BL Ell Re.) The Cartesian 
product B 'E + n is graded (by "graded" we always mean "l2 
graded") according to the rule 

=:= [(BL );;'X (Bdn at [(BL );"X (BL)~] , 

Since there is a direct sum splitting BL = Rat NL, where NL 
is the nilpotent ideal of B L' maps a: B L -+ R (body map) and 
s: BL -+NL are defined. 

The first step in introducing supermanifolds is to con­
sider a distinguished class of functions f U C B 'E,n - B L; the 
most suitable choice seems to be given by the so-called GHoo 
functions introduced by Rogers. 4 One gets a sheaf f§ JY' of 
graded commutative B L' algebras on B 'E.n, where L' is a 
positive integer such that L - L '>n. The most natural defin-

ition of supermanifold now would seem to state that a 
(GHoo ) supermanifold is a pair (M, d) where M is a topo­
logical space and d is a sheaf of graded commutative B L' 

algebras, such that (M,d) and (B ';'"n,f§ JY') are locally iso­
morphic as ringed spaces. However, it was shown elsewhere8 

that the resulting category of supermanifolds is not suitable 
to develop a theory ofSVB's that parallels the ordinary theo­
ry of vector bundles on real or complex manifolds, e.g., the 
graded tangent bundle to a GHoo supermanifold has no stan­
dard fiber. A solution to this problem is obtained by replac­
ing f§ JY' with the sheaf of graded commutative B L algebras 
f§ = f§ JY' at B L' B L> and defining f§ supermanifolds as 
pairs (M,d) locally isomorphic with (B 'E,n, f§ ).8,9 

A particular class of supermanifolds is given by the so­
called De Witt supermanifolds; they are characterized by the 
fact that they can be covered by means of f§ atlases 
A = {( Uj,ifj)} such that the images ifj (U,) are of the type 
if; (U;) = Vi X N 'E,n, where the Vi are open sets in R m 

• It can 
be shown that an (m,n) De Witt supermanifold M is a fiber 
bundle over a smooth m manifold Mo (called the body of M) 
with standard fiber N'E,n. Therefore, M and Mo have the 
same integer cohomology. Moreover, it was proved in Ref. 
10 that the structure sheaf d of a De Witt supermanifold is 
acyclic, which is not the case for a general supermanifold. 

The nonacyclicity of the structure sheaf of a generic su­
permanifold M has the consequence that the de Rham-type 
cohomology of the complex of supersmooth forms on M is 
quite distin8 from the ordinary de Rham cohomology of M, 
and that a Cech-de Rham type isomorphism fails to exist. 
Indeed, introducing the sheaves Ok of k superforms on Mby 
letting 

OD=d, OI=:=Der* d, n k = Akn l
, for k> 1, 

where A is the graded-antisymmetrized graded tensor prod­
uct over d, and defining a sheaf morphism (Cartan's exteri­
or differential) d: nk 

-+ nk + I in the usual way, one gets the 
following resolution of the locally constant sheaf B Lover M: 

(1.1 ) 

The exactness of ( 1.1 ) is a consequence of a Poincare lemma 
for f§ superforms, which was proved elsewhere. II The coho­
mology of the complex of graded BL modules (rO*,d) 
("supersmooth de Rham cohomology") will be denoted by 
HSDR (M) (r denotes the global section functor). Standard 
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cohomological arguments l2 entail the existence of a mor­
phism 

HSDR (M) --H(M,BL ) =HDR (M) !J7BL> (1.2) 

which in general is neither injective nor subjective. However, 
if M is De Witt, so that the sheaves Ok are acyclic, the mor­
phism (1.2) is bijective. 13 

Within the category of [§ supermanifolds it is possible 
to develop a satisfactory theory of SVB's; the category of 
rank (r,s) SVB's on a fixed supermanifold (M,sf) turns out 
to be equivalent to the category of rank (r,s) locally free 
graded sf modules. It is the purpose of the present paper to 
develop a theory of characteristic classes for such bundles in 
the complex case. We shall consider characteristic classes 
with integer coefficients, and we shall study their representa­
tion in terms of the curvature form of a connection on the 
bundle. More precisely, this paper is organized as follows. In 
Sec. II we introduce projective superspaces and analyze their 
integer cohomology; moreover, we review the definition of 
SVB and study the cohomology of the projectivizations of an 
SVB. It turns out that it is convenient to introduce two pro­
jectivizations, an even and an odd one, and correspondingly 
in Sec. III we introduce even and odd Chern classes; a Whit­
ney product formula is then proved. In Sec. IV we investi­
gate whether the characteristic classes of an SVB E over M 
can be represented by means of cohomology classes in 
HSDR (M) defined in terms of the curvature of a connection 
on E (Chern-Weil theorem); we are able to answer in the 
affirmative in the cases where E has rank (1,0) or (0,1), or 
when E has arbitrary rank, but M is De Witt. 

II. PROJECTIVIZATIONS OF A SUPER VECTOR 
BUNDLE 

In this section we deal with some preparatory material 
that we shall need in the following section to introduce 
Chern classes of super vector bundles. We start by recalling 
the definition of SVB. 8 

Definition 2.1: A rank (r,s) complex super vector bun­
dle is a triple (E, M, p) where E and Mare supermanifolds 
and p: E __ M is a [g map, such that (i) M has a cover {Ui } 

with [g diffeomorphisms 

tPi: p-I(U)--UiXF (2.1) 

satisfying pr20tPi = p, where Fis a rank (r,s) free graded CL 

module; (ii) the transition functions defined by letting 

tPi 0 tP;I(X,U) = (x,gij(x)u) 

are morphisms of graded C L modules, i.e., they are [g maps 
gij: Ui n ~ --GL(r,s), where GL(r,s) is the super Lie group 
formed by the even automorphisms of the graded CL module 
C~+S.14.15 0 

We recall that an XEGL(r,s) is an invertible matrix 
showing the block structure 

X= (A B) 
CD' 

where A and D have entries in (CL)o and are rX rand sXs, 
respectively, while Band C have entries in (C L ) 1 and are 
rXs and sX r, respectively. 

With this definition, the sheaf of germs of sections of a 
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complex SVB E over a [g supermanifold (M,sf) is a locally 
free graded Y module, where Y = sf !J7 R C may be identi­
fied with the sheaf of germs of [g maps M __ C L' 

9 and one 
indeed can show that the category of rank (r,s) complex 
SVB's on M and the category oflocally free graded Y mod­
ules are equivalent. 8 

Let us recall some further details in the case of complex 
super line bundles (CSLB's).16 These are defined as com­
plex SVB's of rank (1,0) [equivalently, one could consider 
the rank (0,1) case, since the two types of bundles have the 
same standard fiber and structure group]. Here the transi­
tion functions are [g maps gij: Ui n ~ -- (Cd~, where 
(CL);l' =GL(1,O) =GL(O, 1) is the group ofinvertible ele­
ments of (CL )0; thus the set of isomorphism classes of 
CSLB's over a given supermanifold M is in a one-to-one cor­
respondence with HI (M,Y;l'), where Y~ is the invertible 
subsheaf of Yo' There is an exact sequence 

O--l--Y o--Y;l' --0, 

and the associated cohomology sequence contains the seg-
ment 

{) 

H I(M,Yo) -H I (M,Y;l') _H 2(M,l). 

If EEH I(M,Y~), we define 8(E)EH 2 (M,l) to be the ob­
struction class of E. Unless M is De Witt, 8 is not necessarily 
injective, so that CSLB's are not classified by their obstruc­
tion class. 

Projective supers paces. After fixing non-negative inte­
gers r,s,h,k with h<r and k<s, we define GL(h,k;r,s) as the 
subgroup of GL(r,s) whose elements are matrices of the 
form 

(~ 
b 

e 

q 

c 
o 
I 
o 

where the blocks have the following dimensions, both hori­
zontal and vertical: h,r - h,k,s - k. Here, GL(h,k;r,s) is a 
De Witt supermanifold with body GI(h;r) XGl(k;s), where 
Gl(h;r) is the subgroup of matrices in Gl(r;C) (ordinary Lie 
group) of the form 

(~ ~). 
Hence it follows that the quotient 

Gh•k (r,s) = GL(r,s)/GL(h,k;r,s) 

is a De Witt supermanifold, of even dimension 
h(r - h) + k(s - k), odd dimension k(r - h) + h(s - k), 
and body Gh (r) X Gk (s), where Gh (r) is the Grassmann 
manifold of h planes in C'. It is otherwise obvious that 
Gh•k (r,s) parametrizes the rank (h,k) free graded sub-CL -

modules of C ~ + s. 

Now, let Wbe a rank (r,s) free graded CL module, and 
define 

P 1.0( W) = space of rank (1,0) 

free graded sub-CL -modules of W, 

po, I (W) = space of rank (0, 1 ) 

free graded sub-C L -modules of W. 

U. Bruzzo and D. H. Ruiperez 1234 



                                                                                                                                    

From the previous discussion it follows that P I,O( W) and 
pO,1 ( W) are both De Witt supermanifolds, with dimensions 
(r - 1,s) and (s - l,r), respectively, and have bodies iso-• morphic with the complex projective spaces pr - I and 
ps - I • It follows that P 1,0 (W) [resp. P 0,1 ( W) ] has the same 
integer cohomology as pr - I (resp. ps - I ). 

Tautological exact sequences. On P I.O( W) we may de­
fine a tautological bundle So, which is the rank (1,0) subbun­
dIe of P I.O( W) X W formed by the pairs (u,v) such that VEU; 

analogously, one defines a rank (0,1) tautological bundle SI 
onPO,1 (W), which isa subbundleof pO,1 (W) X W. Now, let 
V be the body of W, i.e., the vector space V = W EEl c C, 

I. 

where C is given a C L -module structure by means of the body 
map u: C L -+ C; V is graded, V = ~) EEl VI' Denoting by Sf, 
i = 0,1, the tautological bundles of the projective spaces 
P( Vi)' the body of Si (in the sense of De Witt supermani­
folds) in just Sf, whence one has commutative diagrams 

0-+ Si -+ pl-i,i( W) X W-+ Qi -+ 0, 

, , l i = 0,1, (2.2) 

° -+ Sf -+ P( Vi ) X Vi -. Q f -+ 0, 

where Qi and Q f are by definition the quotient (super) 
bundles. The following theorem is a straightforward conse­
quence of (2.2) and of classical results concerning the coho­
mology of projective bundles. 17 

Theorem 2.1: The integer cohomology of P I.O( W) is 
freely generated over Z by {1,x,x2

, ••• ,xr
- I}, where x is the 

obstruction class of So. Analogously, the integer cohomo­
logy of pO.1 ( W) is freely generated over Z by 
{1,t,t 2

, ••• ,t S
-

I}, where t is the obstruction class of SI' 
Projectivizations 0/ super vector bundles. Let us define 

the super Lie group 

PGL(r,s) = GL(r,s)/(CL )tI 

together with the canonical projection ;L: 
GL(r,s) -+PGL(r,s); PGL(r,s) acts in a natural way on 
pl.O( W) andpo,l( W). Given an SVB p:E-+M, whosetran­
sition functions relative to a fixed cover are gij' we define its 
even and odd projectivizations as follows: P I,O(E) [resp. 
pO,1 (E)] is the bundle on Mwhose standard fiber over xEM 
isP l.o(Ex ) [resp. pO,1 (Ex)] and whose transition functions 
are the maps ;L0gij' We shall denote by 1Ti: P 1- i,i(E) -+M, 
i = 0,1, the bundle projections. The operation of taking the 
projectivizations is functorial, in the sense that iff M -+ N is a 
morphism of f!J supermanifolds, and E is an SVB over N, 
there are f!J maps F

i
: P I - i,i ( / - I E) -+ P I - i.i (E) such that 

the following diagram commutes: 

F, 

pI -I,i( /-IE),-+P 1- i,i(E), 

i = 0,1. 
f 

M N, 

P l.o(E) and po.! (E) carry tautological bundles defined in 
the obvious way; So(E) -+p I,O(E) has rank (1,0), while 
SI (E) -+pO.1 (E) has rank (0,1). There are two tautological 
exact sequences, 

O-+Si (E) -+ 1Ti- IE -+ Qi (E) -+0, i = 0,1. 
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The assignment of the tautological bundles is functorial as 
well, i.e., there are commutative diagrams 

In order to get information about the integer cohomo­
logy of the projectivizations of E, we must use the Leray­
Hirsch theorem. 18 We need it in the following weaker form 
than the one given in Ref. 18: if p: Q-+M is a locally trivial 
topological bundle, with standard fiber F, K is a principal 
ring, and there are cohomology classes {a l " ·aq } that when 
restricted to the fibers generate freely over K the cohomo­
logy of the fibers with coefficients in K, then H( Q,K) is a free 
H(M,K) module generated by {a l " ·aq }. Ifwe consider the 
bundles pI - i,i(E) over M, the hypotheses of the Leray­
Hirsch theorem are fulfilled as a consequence of Theorem 
2.1, so that we have the following theorem. 

Theorem 2.2: The following isomorphisms ofZ modules 
hold: 

H(P \- i,i(E),Z) 

=H(M,l.) ® zH (P 1- i.i( C;: +'i),Z), i = 0,1. 

III. CHARACTERISTIC CLASSES OF SUPER VECTOR 
BUNDLES 

Given a rank (r,s) SVB p: E-+M, we can straightfor­
wardly introduce its even and odd Chern classes as follows: if 
x and t are, respectively, the obstruction classes of the even 
and odd tautological bundles of the projectivizations of E, 
we let (with reference to Theorem 2.2) 

, s 

x'= - L CJ(E)x'-j, t S = - L Cl(E)t S -k, 
j=1 k=1 

(3.1 ) 

so that CJ(E) and C 1 (E) are well determined elements in 
H 2j(M,Z) and H 2k (M,Z), respectively. Correspondingly 
there are two total Chern classes, 

r S 

CO(E) = L CJ(E), CI(E) = L Cl(E). (3.2) 
j=O k=O 

According to this definition, a rank (r,s) SVB has r even and 
s odd Chern classes. The normalization and functoriality 
properties of these classes are readily proved. 

Theorem 3.1: If E has rank (1,0), then 

CO(E) = 1 - 8(E); (3.3) 

if E has rank (0,1), then 

CI(E) = 1-8(E). (3.4 ) 

Proof If rank E = (1,0), then E has only an even projec­
tivization; moreover, So(E)=E, so that (3.3) follows. A 
similar argument applies to the rank (0,1) case. D 

Theorem 3.2: Iff M -+ N is a morphism of f!J supermani­
folds, and E is an SVB over N, then 

Ci(/-IE) =/*Ci(E), i= 0,1. 

Proof This property follows from the functoriality of 
the projectivized and tautological bundles. D 
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In order to prove a Whitney product formula, we need 
some further constructions. Recalling that Y is the sheaf of 
germs of ~ maps M - C L' and denoting by CC the sheaf of 
germs of smooth complex-valued functions on M, we can 
define a morphism y: Y - CC by letting y( j) = (IDj for all 
jEY( U). By means of y, the sheaf cr; can be given an Y­
module structure. Given a rank (r,s) SVB E over M, we let 

E# = E® yc. (3.5) 

E # is a rank r + s graded smooth complex vector bundle on 
M, which splits canonically into E # = E 1! ffi E f, where the 
two summands have rank rand s, respectively. The bundles 
E # can be described in terms of their transition functions as 
follows. If {g,) is a set of transition functions for E, then the 
matrices {aogi) have the block structure 

(
h.. 0) 

aogij = ; k
ij 

EGl(r;C) XGI(s;C), 

and the sets {hij} and {k ij } provide transition functions for 
E 1! and E f, respectively. 

The definition (3.5) en tails the existence of vector bun­
dle maps E - E f; these can be lifted to maps between the 
projectivized bundles pI - i.i(E) _ peE f) and between the 
tautological bundles, so that one obtains commutative dia­
grams 

O-Si (E) -1Ti- IE -> Qi (E) -0, 
t t t i = 0,1, 

O-S(ET) -1TT -IE_Q(ET) -0, 

where 1TT is the bundle projection E T - M. The commutati­
vity of these diagrams implies that, for fixed i, Si (E) and 
SeE T) have the same obstruction class. This in tum implies 
the following lemma. 

Lemma 3.1: CO(E) = c(E!!), CI(E) = c(Ef). 0 
It is now possible to prove Whitney's formula. 
Theorem 3.3: IfO-E -F - G-O is an exact sequence of 

SVB's, then 

Ci(F) = Ci(E)Ci(G), i = 0,1, (3.6) 

where the product in the right-hand side is the cup product 
inH(M,Z). 

Proof Since O-E-F-G-O is an exact sequence of 
locally free modules, by tensoring it with CC one gets an exact 
sequence of smooth vector bundles over M, 

O-E#-F#-G#-O, 

which splits, thus giving isomorphisms F f =E f ffi G f. The 
ordinary Whitney formula then yields c(Ff) 
= c(Ef)c(G f), which, together with Lemma 3.1, implies 
the thesis. 0 

It should be noticed that we have stated the Whitney 
product formula in terms of exact sequences ofSVB's rather 
than in terms of direct sums ofSVB's, since, due to the nona­
cyclicity of the structure sheaf of the base supermanifolds, 
not all exact sequences ofSVB's split (see Sec. IV). 

We conclude this section by introducing the Chern 
character of an SVB; as we shall see in Sec. IV, the represen­
tation of the characteristic classes of an SVB in terms of 
curvatures is most simply exhibited by means of the Chern 
character. For a given rank (r,s) SVB E over M, by means of 
the formal factorizations l9 

1236 J. Math. Phys., Vol. 30, No.6, June 1989 

r r 

I CJ(E)x
j = IT (1 + yjx), 

j=O j=1 

s s 

I C1 (E)t k = IT (1 + 8k t), 
k=O k= I 

we define the even and odd Chern characters of E 

ChO(E) = ± el'j, ChI (E) = ± e\ 
j= I k= I 

and the total Chern character 

Ch(E) = Cho(E) - ChI (E). 

Of course Ch(E)EH(M,Z), and there is a decomposition 

'" 
Ch(E) = I Chi(E), Chi (E)EH 2i(M,Z); 

i=O 

in particular, one has Cho (E) = r - s (we assume that Mis 
connected) . 

The analog of the Whitney product formula for Chern 
characters reads as follows: if O-E-F-G-O is an exact 
sequence of SVB's, then 

Chi(F) =Chi(E) +Chi(G), i=O,1. (3.7) 

IV. REPRESENTATION OF CHARACTERISTIC 
CLASSES IN TERMS OF CURVATURE FORMS 

Let E be a complex SVB of rank (r,s) on a supermani­
fold (M,d); a connection II on E is an even morphism of 
sheaves of graded C L -modules 

ll: E-Hom(TM,E) =:;0 1 ®;/'E, 

satisfying (recall that Y = d ® R C) 

ll(f5) =jll(t) +dj®t, VjEY(U), tEE(U), 

and V open UCM. 

In contrast with smooth bundles, and in analogy with holo­
morphic bundles, an SVB does not always carry a connec­
tion (a more detailed discussion of this point is to be found in 
Ref. 20). This is due to the nonacyclicity of the structure 
sheaf of a generic supermanifold; indeed, in the case of a De 
Witt base supermanifold, connections always exist. 

Let 

(4.1 ) 

be an exact sequence of complex SVB's over a supermanifold 
(M,d); general arguments21 show that the sequence (4.1) 
is split if and only if a certain cohomology class in 
H I (M,Hom (G,E») vanishes. Since Hom (G,E) is a locally 
free graded Y module, it is acyclic if M is De Witt,20 so that 
we have that all exact sequences ojSVB 's on a De Witt super­
manifold split. This implies that an SVB over a De Witt su­
permanifold always admits connections; indeed it can be 
shown that the connections on E are in a one-to-one corre­
spondence with the splittings of the exact sequence ofSVB's 
overM 

0-0 1 ®E-D(E) -E_O, 

where D(E) is E ffi (0 I ® E) endowed with the structure of 
graded Y module given by 

j<tffia) =f5ffi (ja + dj®t),VjEY(U), 

tEE( U), aE(!l1 ®E)( U), 

and V open UCM. 
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The representation theorem has been proved elsewhere 
in the case of complex super line bundles. Let E be a CSLB 
over a (generic) supermanifold M, and assume that E ad­
mits a connection a, with curvature form !l. The Bianchi 
identity states that !l is closed, and one can prove22 that the 
cohomology class [!l] EH ~DR (M) ® R C is independent of 
the choice of the connection. Letj: H(M,'l) -+H(M,CL ) be 
the morphism induced by the inclusion of sheaves Z - C L' 

and let a: HSDR (M) ® R C-H(M,CL ) be the morphism in­
duced by (1.2); then we have l6 

j(C? (E») = (i/21T)a([!l]). (4.2) 

Equation (4.2) refers to the rank (1,0) case; obviously, in 
the rank (0,1) case we getj(C: (E») = (i/21T)a([!l]). In 
terms of the Chern character, in both cases one has 

(4.3) 

where Str denotes the supertrace of a matrix in GL(r,s).14 
Equation (4.3) follows from the fact that Str !l = !l if rank 
E= (l,O),whileStr!l= -!lifrankE= (0,1). 

Weare able to generalize this result to the case of a rank 
(r,s) SVB, provided that the base supermanifold is De Witt. 

Theorem 4.1: Let E be a rank (r,s) SVB over an (m,n) 
dimensional De Witt supermanifold M. For any connection 
a on E with curvature !l, one has 

j(Chk (E»)=(i/21T)k[Str!lk], 1 <;k<;mI2. (4.4) 

For k> m12, both sides of (4.3) vanish identically. 
Before proving this theorem, we need the following re­

sult, which holds also when the base supermanifold is not De 
Witt. 

Lemma 4.1: Letp: E-Mbe a rank (r,s) complex SVB. 
There is a [1 supermanifold morphism f N - M such that: 
(i)j*:H(M,'l) -H(N,Z) is a monomorphism; (ii) thereisa 
chain of morphisms of complex SVB's over N, gj: Fj _ I -+ Fj, 
withj = 1" 'r+ s, Fr+s =j-IE, and Fo = M x {O}, such 
that any quotient superbundle Fj I Fj _ I has either rank ( 1,0) 
or (0,1). 

Proof This lemma is proved by double induction on the 
rank of E. If rank E = (1,0) or (0,1) the result is trivial. 
Suppose now that rank E = (r + l,s) and consider the even 
projectivization of E, 1To: P 1,0 (E) -M; the cohomology map 
~: H(M,Z) -H(P I,O(E),Z) is injective by Leray-Hirsch. 
The pullback bundle 1TO-IE-P 1,0(E) has a tautological su­
per line subbundle So (E) -+ P \,0 (E), and the quotient super­
bundle Qo(E) has rank (r,s). By the induction hypothesis, 
there is a [1 map g: N -P 1,0 (E) satisfying the properties in 
the statement of this lemma. Then the compositionj = 1T oog: 
N - M yields the required map. The induction on the odd 
rank is proved in the same way. 0 

Finally, we may prove Theorem 4.1. As a consequence 
of Lemma 4.1, and using the fact that on a De Witt super­
manifold all exact sequences of SVB's split, there is a [1 
morphismf N -M such that 

j-IE=L I ffi'" ffiL r ffiKI ffi'" ffiKs' (4.5) 

where the L 's have rank ( 1,0) and the K 's have rank (0,1). 
Using a "tubular partition of unity" over M (Ref. 20) it is 
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possible to define a connection a on E which when pulled 
back toj-IE "splits" in accordance with (4.5),i.e., it defines 
connections I:::.j on Lj and 0 h on K h , j = 1 .. · r, h = 1" . s. 
Then we have [recalling that Str(!l~)k, where!l~ is the cur­
vature of 1:::., can be regarded as a superform on M] 

j* Str(!l~)k = ± (!l~j)k _ ± (!lElh)k. (4.6) 
j= I h= I 

Now Eqs. (3.7), (4.4), and (4.6) yield 

j*oj(Chk (E») = (i/21T)kj*oa( [Str!lk]). 

Since j* is injective, this implies Eq. (4.4). 
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The Birkhoff-Gustavson normal form of one-dimensional double-well 
Hamiltonians 
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The Birkhoff-Gustavson normal form (BGNF) is employed to study general double-well 
anharmonic oscillators with polynomial potentials of degree 4. Via an analytic continuation of 
the BG NF series, expressions are presented that provide classical and semiclassical results for 
all energies. A surprising observation of the classical period and an interesting feature of the 
semiclassical quantum numbers are reported. It is shown that except for a small region near 
the top of the potential barrier, the BGNF approach yields accurate quantum energies. 

I. INTRODUCTION 

Over the past few decades, one-dimensional anhar­
monic oscillators have been studied extensively. The work 
on the quartic oscillator has been particularly comprehen­
sive; it has been studied as a mathematical and physical mod­
el in both classical and quantum theory. In classical theory, 
the solution to Newton's equation of motion has been given I 
in terms of Jacobi elliptic functions and the period and action 
have been given2 in terms of generalized hypergeometric 
functions. In quantum theory, the literature on the quartic 
oscillator is very extensive. 3 Bender and Wu4 showed that 
the Rayleigh-Schr6dinger (RS) perturbation series di­
verges for all values of the coupling parameter: This result 
prompted resummation studies of the series, including the 
Borel5 and Pade approximant6 methods. In more recent 
years, the double-well system obtained by adding a cubic 
term to the quartic oscillator (cubic-quartic oscillator) has 
received considerable attention.7 Many of the techniques 
employed in the study of the quartic oscillator (e.g., the use 
of elliptic functions and Borel summation) have been ex­
tended to the cubic-quartic oscillator. The classical period in 
the most general case, where the anharmonic term is any 
polynomial of order n > 4, is represented in terms of a "hy­
perelliptic" integral which has just recently been shown8 to 
be expressable in terms of a sum of multiple hypergeometric 
series. The enormity of work on one-dimensional anhar­
monic oscillators is the result of the applicability of this mod­
el in such fields of study as molecular dynamics and quan­
tum field theory.9 

In this paper, we study the cubic-quartic oscillator using 
the Birkhoff-Gustavson normal form (BGNF) approach. 
The double-well nature of this oscillator makes it an attrac­
tive model to study. The BGNF approach is useful because it 
provides the classical perturbation series, which is equiva­
lent to the quantum RS perturbation series when the quan­
tum operators are replaced by their corresponding classical 
functions. Since this classical series is a power series in the 
action, semiclassical results may easily be compared with 
exact quantum results once the series is properly summed. In 
Sec. II we define the Hamiltonian under consideration in 

.) Present address: Department of Physics, University of Regina, Regina 
Saskatchewan, S4S OA2 Canada. 

two coordinate systems to facilitate the determination of the 
BGNF expansion about the equilibrium points of both the 
left and right wells. In Sec. II we also discuss some interest­
ing properties of the action and period of the oscillator. In 
Sec. III we outline the algorithm used to perform the Lie 
transforml;ltions in the BGNF approach before developing 
the series. The analytic continuation of this series is also 
derived by identifying the inversion of the series with gener­
alized hypergeometric functions. Pade approximants are 
presented in Sec. IV for inner and analytically continued 
series: Numeric classical results from these approximants 
are compared with results from truncated series, as well as 
with exact results. In Sec. IV we compare the semiclassical 
and quantum energies of the asymmetric double-well 
(ASDW) oscillator. A summary is given in Sec. V. 

II. THE HAMILTONIAN 

In general, the Hamiltonian under consideration defines 
an ASDW potential. Since either the right (R) or left (L) 
wells may be expanded to obtain the BGNF series, we define 
the Hamiltonian as 

Hn(x,p) =Ho+HJn +~H2n' 

where 

Ho =! (p2 + x 2), HJn = bn x 3
, H2O = gnx4, 

(2.1 ) 

with n = R or L. Here gn is taken to be positive definite and 
bn is taken to be arbitrary. The system defined by HL is 
related to that defined by H R through the coordinate shift 

x-x- (3bR +f3)/4gR, f3= [9b~ -8gRr 12, 

along with the energy scaling 

H R =(7HL +a, 

where 

(7= [af314gR]1/2, a=f3+3bR, 

a= [f3 2 (gR -abR ) +3gRb~]/64~, 

bR = - (f3 + 2d3 /2bL ), gR = ~gL' 

(2.2) 

In the Hamiltonian (2.1) the choices bn = 0 and 

bn = ± -Ji;; correspond to the single-well (SW) and sym­
metric double-well (SDW) cases, respectively. The BGNF 

1238 J. Math. Phys. 30 (6), June 1989 0022-2488/89/061238-07$02.50 ® 1989 American Institute of Physics 1238 



                                                                                                                                    

approach has been applied to the SW and SOW oscillators in 
Refs. 10 and 11. 

It is worthwhile to mention here that the period and 
action of the oscillator of Eq. (2.1) have some interesting 
properties. In the SOW case, the symmetry suggests that the 
period for a given energy in the left well (TL ) should be 
identically equal to the period in the right well (TR ), as 
indeed is true. One might think that for the asymmetric case, 
the period will depend on the well in which the classical 
particle executes its oscillatory motion. To our surprise, we 
observed that the oscillator has only one period for a given 
energy, i.e., TL = TR in the asymmetric case as well! Let the 
energy E be measured from the bottom of the right well in 
Fig. 1 and let VR (x) represent the potential with the coordi­
nate origin at the right well. The coordinates x I' X 2, and X3 of 
the critical points of the potential are given by 

XI = 0, X z = (- 3bR +P)l4gR , 

X3 = (- 3bR -P)l4gR • 

In the "overlapping region" between the lines ASB and 
CWO in Fig. 1, the energy satisfies the condition 
0<.£< VR (xz) and the particle can oscillate in either well. It 
is a simple matter to show that the period is the same irre­
spective of the well identification. Let d, c and b, a be the 
respective turning points in the left and right wells for any 
energy in the overlapping region (see Fig. 1). The periods 
TL and TR are given by 

TL = .j2 , TR = .j2 . I
e dx La dx 

d ~E- VR(x) b ~E- VR(x) 

Using Eqs. (253.00) and (257.00) of Ref. 12, it can be 
shown that TL = TR = pF(1T/2Im), where 

p = 4/~g(a - c)(b - d), 

m = (a - b)(c - d)/(a - c)(b - d). 

::; 
I ~--~----~--~----~--~ 

-21 -16 -11 -6 -1 4 

X 

FIG. 1. The potential V(x) = (!)r + br + q)gx' as a function of x for 
b = 0.075 and g = 0.005, with the coordinate origin at the bottom of the 
right well. 
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The elliptic integral F( 17'/21 m) can be expressed in terms of a 
hypergeometric function (see Abramowitz and Stegun 13) as 

F(1T/2Im) = (1T/2)2FI(~ ,p,m). 

Since the action I and the period T are related by the expres­
sion dI / dE = T /217', the difference in the actions for any two 
energies in the two wells is the same. 

III. THE BGNF OF THE ASOW, SOW, AND SW 
OSCILLATORS 

In this section we briefly outline the algorithm used in 
developing the BGNF series, referring the interested reader 
to Refs. 14--19 for a more detailed discussion. In the BG NF 
approach, a classical Hamiltonian function H(x) where 
x = (Xi,Pi)' i = 1, ... ,n, is canonically transformed to a nor· 
mal ordered Hamiltonian function K ( ~) , ~ = (S i, 1/ i ) , 

i = l, ... ,n. The transformation is implemented by expressing 
x as the following Taylor series in powers of an expansion 
parameter E about E = 0, with x = S at E = 0: 

x(€) =~+ f En [dnx] . 
n=1 n! d~ £=0 

(3.1) 

Following this "coordinate transformation," the Hamilto­
nian function is transformed by being expressed in the Tay­
lor series form 

'" En 
H[x(E)] = I -Hn(x), 

n=O n! 

Hn(x) = [anH[~(€)]] , 
aE £=0 

(3.2) . 

rewriting the partial derivatives in Hn (x) in terms of total 
derivatives evaluated at x = ~, and then writing these total 
derivatives recursively in terms of Lie derivatives or Poisson 
brackets. The generating function W [x ( E)] for the Lie de­
rivatives is defined through 

dxi aW[X(E)] 
-=--"--":""":'''::-
dE api 

dpi aW[X(E) ] 
-= ---=--.-::..-.:....::.., i= l, ... ,n 
dE axi 

and is assumed to have the series representation 

'" €n 
w[x(€)] = I - wn + I (x), 

n=O n! 

(3.3a) 

(3.3b) 

where Wn + I (x) are homogeneous polynomials of degree 
n + 3. The transformed Hamiltonian assumes the form 

The first three Kn 's of Eq. (3.4) are given by 

Ko = Ho, KI = HI + {Ho,w l }, 

(3.4) 

K2 = H2 + 2{HI,wl } + {HO,w2} + {{HO'wl},w l }· 

Although K(~) is the canonical transform of H(x), it must 
also satisfy the additional condition 

{Ko(~),Km (~)} = ± [aKo aKm 
i= I aSi a1/i 

_ aKo aKm] =0, "rim 
a1/i aSi 
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Using this procedure we have generated the BGNF series for Hn (x,p) as given in Eq. (2.1) for arbitrary bn an~ gn 
(hereafter referred to as band g). The first few terms of the infinite BGNF series with b 2 = Ag, K = gK, and Ko = gKo are gtven 

K = K {I + [~-~ A ]KO + [ _ ~ + 225 A _ 705 A 2]~ 
o 4 4 16 8 16 

[ 
375 _ 24945 A + 116325 A 2 _ 115755 A 3]~ 

+ 128 128 128 128 

[ 
10689 338625 A _ 6383475 A 2 + 8163729 A 3 _ 23968161 A 4]K~ 

+ 1024 + 256 512 256 1024 

[ 
87549 _ 18237765 A + 145625865 A 2 _ 687587901 A 3 + 2424834657 A 4 _ 

+ 2048 2048 1024 1024 2048 
1412410545 A 5]K5 

2048 0 

[ 
3132399 489189285 A _ 23869797345 A 2 + 44855525331 A 3 

+ - 16384 + 8192 16384 4096 

_ 556379422209 A 4 + 374415391845 A 5 _ 361809217935 A 6]K~ 
16384 8192 16384 

[ 
238225977 _ 104743883475 A + 3644984868525 A 2 _ 39986908838415 A 3 

+ 262144 262144 262144 262144 

+ 190295579741355 A 4 _ 437037206771385 A 5 + 475728673084335 A 6 

262144 262144 262144 

196443710834085 A 7]K7 + ... } . 
262144 0 

It has been shown 17 that the BG NF series may be recov­
ered from the quantum RS perturbation series for the Ham­
iltonian given in Eq. (2.1) by replacing the quantum opera­
tors by their corresponding classical functions. However, 
this quantum to classical mapping is not invertible. The 
BGNF series cannot be quantized so as to yield the RS se­
ries,20 but rather, the BGNF algorithm outlined above must 
be modified by replacing the Poisson brackets (Lie deriva­
tives) with quantum commutators to obtain the quantum 
normalform l7 identical to the RS series. 

The series in Eq. (3.5) is given in powers of gKo, where 
the action Ko defined by 

Ko=-(S2+ r/) =- pdx 1 1 f 
2 21r 

(3.6) 

is the constant of motion for our one-dimensional problem. 
Since the normal ordered Hamiltonian K is given in terms of 
the action, the study of classical and semiclassical properties 
of the anharmonic system becomes simple. For example, 
Hamilton's equations of motion are given by 

ds = OJ'TJ, d'TJ = - OJs, 
dt dt 

where 

dK fi' K OJ = - = a constant or a gtven 0 
dKo 

and the period T is given by 

T= 21r/OJ. (3.7) 

The Einstein-Brillouin-Keller21 (EBK) semiclassical ener­
gies are obtained by substituting 
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(3.5) 

Ko= (m +!) (3.8) 

(where m is an integer) in Eq. (3.5). The simplicity ofthe 
BGNF approach is offset by the fact that as in any power 
series approach, the radius of convergence of the series limits 
the region in which accurate results-which may require a 
very large number of term8--{:an be obtained. In order to 
extend the range of applicability of our BGNF series, we 
now turn our attention to the study ofEq. (3.5). 

We begin by noting that since the coefficients of K~ are 
polynomials in A of order n - 1, the series for K is in fact a 
double-power series. It can be shown II that Eq. (3.5) is the 
inversion of the double-series 

r(3i + 2j + !) (UK)i( - 2K)j (3.9) 
Ko = K 2: -------=-- ~'--.....:.....-'---~ 

iJ rU+!>U+j+ 1)1 1111 

In order to invert the series in Eq. (3.9), we express it as 
Ko = K,p(K), where ,p(K) represents the terms under the sum­
mation sign. The inversion is then given by 

00 ~[dn-I 1] K=2:----- . 
n=1 n! dKn- 1 ,p(K)n K=O 

As pointed out in Ref. 11, the series in Eq. (3.9) has a 
small (albeit nonzero) region of convergence which puts 
severe limitations on the values of K and Ko to compute each 
other. For the SDW case these limitations were overcome by 
using Pade approximants and a combination of the analytic 
continuation of the relevant series and Pade approximants. 
In this paper we are concerned with the general ASDW case. 
After some algebra Eq. (3.9) can be expressed in the follow­
ing forms: 
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r(2m+n+p (_A)n( _2K)m 
KO = K L ---------"""""---'--'----"'--

m,It r(n + !)(m + l)(m - n)! n!m! 

where 

T(j,m + 1) 

(3.10) 

= [(m+ 1)(m+!)/(2j-m)(j-m)]T(j,m), 

T(j,O) = 1 

and 

K r(3j12 + nr(3j12 + V (16AK)j 

Ko = .J21T ~ r(j + !)r(j + 2) Jl 

X 2F{i + !,i + !,j+2,-8K). (3.12) 

Setting A = 1 in Eqs. (3.9 )-( 3.12) gives results for the 
SDW case. It is interesting to note that according to the 
definition of Hom (see ErdelyiI3), the double-hypergeome­
tricseriesofEq. (3.9) is of order 3, whilethatofEq. (3.10) is 

where 

of order 2. This is another example of the non uniqueness of 
the order of multiple-hypergeometric series. Since one of the 
parameters of F in Eq. (3.lla) is - j, the hypergeometric 
series is simply a polynomial. Equation (3.11 b) is conven­
ient for numerical calculations, especially when A> 1. It is 
seen that for A> 1, the terms in Eq. (3.11 b) are positive defi­
nite and hence the difficulty of adding large terms of alter­
nating signs, as in Eq. (3.lla), is removed. For large K, we 
obtain the following expression by analytically continuing 
the function Fin Eq. (3.12) and collecting similar terms: 

1 [ 3/4 00 ( 1 )HI ru+vrU-i) 
Ko=- (8K) L -- . 

21T j=O 8 rU + !)J'K" 

X 2F1( - 2jj + !,!.A.) 

_ (8K)1/4 f(_J...)HI ru+vru~n 
j=O 8 ru + W'K" 

X 2F1( - 2j - 1j + M,A)] . (3.13) 

We now invert Eq. (3.13) to obtain an expression valid for 
large Ko: 

1" . 
K = z2 "7- aiz', 

where 

Z= (aKo)-2/3, a=3r(3/4)211T1/225/4 

and the first few ai's are given by 

(3.14 ) 

Fj=2F]( - 2jj + M.A.), Gj =C2F1 ( - 2j - 1j + M,A), c= 3rw4/r23/2. 

IV. NUMERICAL RESULTS OF THE ASDW OSCILLATOR 
In this section we illustrate the practical usefulness of 

the BGNF series given in Eq. (3.5) and its analytic continu­
ation (3.14) by presenting some numerical results for these 
series as well as their Pade approximants. The numerical 
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results were obtained by setting b = 0.075 and g = 0.005 
( corresponding to A = 9/8). A plot of the potential with the 
coordinate origin at the bottom of the right well is given in 
Fig. 1. For these parameter values, the bamer height V(x2 ) 

and the depth of the left well V(x3 ) assume the values 
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5.04288998566897891 and - 15.49210873566897891, re­
spectively. 

A. Classical action and energy 

A set of numerical values of the classical energy E = K/ g 
and the corresponding action Ko = Kol g are given in Tables I 
and II. Table I contains the results for E < V(x2 ), while the 
entries of Table II are for E> V(xz)' Since the BGNF series 
converges slowly when E is close to the barrier height V(x 2 ), 

we have considered Pade approximants of the series in Eqs. 
(3.5) and (3.14). 

In Table I, the results of two types ofPade approximants 
are reported. Following our procedure developed for the SW 
and SDW oscillators, we have obtained the classical energies 
from a [14,13] Pade approximant of the cube of the series in 
Eq. (3.5) for the two asymmetric wells. The cube of the 
series in Eq. (3.5) is expressed as JC3 = K~ U. Then U is ap­
proximated by a [ 14,13] Pade approximant ( U::::: P[ 14,13] ) 
which leads to K:::::KoP[14,13] 1/3. The different results for 
the two wells are obtained by implementing the scalings for 
b, g, and the Hamiltonian given in Sec. II. These types of 
Pade results are presented in columns 2 and 6 of Table I. The 
other type of approximation is obtained by using a [14,13] 
Pade approximant of the series itself; the results are shown in 
columns 3 and 7. The results in columns 4 and 8 are obtained 
by using 30 terms in the sum of the series, while the exact 
results in columns 5 and 9 are obtained by solving Eq. 
(3.11 b) for given Ko. It may be mentioned that the results 
obtained from Eq. (3.llb) and those from the numerical 
integration ofEq. (3.6) agree to all figures within the nu­
merical accuracy. It can be seen from Table I that the results 
from the two types of Pade approximations and those from 

TABLE II. The classical energy as a function of the actiOifabove the poten­
tial barrier for b = 0.075 and g = 0.005. The results under E( PS) are ob­
tained from a [13,13] Pade approximant ofEq. (3.14), while those under 
E(SR) are obtained by using 28 terms in the series given in Eq. (3.14). The 
numbers for E(EXACT) are obtained by numerically integrating the ac­
tion integral given in Eq. (3.6). 

Ko E(PS) E(SR) E(EXACT) 

25.4 5.07465 5.06957 5.09037 
25.5 5.10449 5.10012 5.11749 
26.5 5.42899 5.42829 H3206 
27.5 5.79067 5.79087 5.79167 

57.5 23.32457 23.32457 23.32457 
58.5 24.05134 24.05134 24.05134 
59.5 24.78519 24.78519 24.78519 

100.5 59.98498 59.98498 59.9&498 
IOU 60.95061 60.95061 60.95061 
102.5 61.92072 61.92072 61.92072 

148.5 110.88764 110.88764 110.88764 
149.5 112.03772 112.03772 112.03772 
150.5 113.19113 113.19113 113.19113 

the series compare well with the exact results. As E ap­
proaches the value V(xz), the disagreement among these 
results begins to show; it becomes clear that the Pade ap­
proximant of the cube of the series yields the best results for 
any given number of terms in the series. 

In Table II, the entries in column 2 are obtained from a 
[13,13] Pade approximation of the series in Eq. (3.14), 
while those in column 3 are obtained by using 28 terms in the 
sum of this series. The exact results in column 4 are obtained 
by numerically integrating Eq. (3.6). Once again we notice 

TABLE I. The classical energy as a function of the action in the asymmetric wells for b = 0.075 andg = 0.005. Here E(LPC), E(LPS), and E(LSR) and 
E(RPC), E(RPS), and E(RSR) represent energies for a given Ko in the left and right wells, respectively. We obtain E(LPC) and E(RPC) from a [14,13] 
Padeapproximant ofthe cube of theseries in Eq. (3.5); E(LPS) and E( RPS) are obtained from a [14, 13} Pade approllimant ofEq. (3.5); and E( LSR ) and 
E(RSR) are obtained from Eq. (3.5) using 30 tenns in the sum. The E(EXACT) are obtained from Eq. (3.lIb). 

Ko E(LPC) E(LPS) E(LSR) E(EXACT) E(RPC) E(RPS) E(RSR) E(EXACT) 

0.50 - 14.84400 - 14.84400 - 14.84400 - 14.84400 0.49558 0.49558 0.49558 0.49558 
1.50 - 13.56033 - 1356033 - 13.56033 - 13.56033 1.45859 1.45859 1.45859 1.45859 
2.50 - 12.29389 - 12.29389 - 12.29389 - 12.29389 2.37950 2.37950 2.37950 2.37950 
3.50 - 11.04534 - 11.04534 - 1 \.04534 - 11.04534 3.25052 3.25052 3.25052 3.25052 
4.50 - 9.81540 - 9.81540 - 9.81540 - 9.81540 4.05845 4.05845 4.05845 4.05845 
5.50 - 8.60485 - 8.60485 - 8.60485 - 8.60485 4.77345 4.77345 4.77356 4.77345 
5.90 - 8.12626 - 8.12626 - 8.12626 - 8.12626 5.0\000 5.01001 5.01320 5.00996 
6.50 - 7.41460 - 7.41460 -7.41460 -7.41460 
7.50 - 6.24566 - 6.24566 - 6.24566 - 6.24566 
8.50 - 5.09917 - 5.09917 - 5.09917 - 5.09917 
9.50 - 3.97645 - 3.97645 - 3.97645 - 3.97645 

10.50 - 2.87905 - 2.87905 - 2.87905 - 2.87905 
11.50 - 1.80881 - 1.80881 - \.80881 - 1.80881 
12.50 - 0.76796 - 0.76796 -0.76796 - 0.76796 
13.50 0.24073 0.24073 0.24073 0.24073 
14.50 1.21368 1.21368 \.21368 \.21368 
15.50 2.14608 2.14608 2.14608 2.14608 
16.50 3.03095 3.03095 3.03100 3.03095 
17.50 3.85697 3.85697 3.85748 3.85697 
18.50 4.60115 4.60115 4.60595 4.60115 
19.13 4.99611 4.99617 5.02093 4.99532 
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TABLE III. Comparison of the semiclassical and quantum energies of the ASDW oscillator for b = 0.075 and g = 0.005. The entries in columns 2, 5, and 8 
are taken from Tables I and II. The quantum energies are obtained by diagonalizing a 1800X 1800 Hamiltonian matrix in the harmonic oscillator basis set 
with p 2 = 2.7482987390560. 

nL E~ONF Equant nR E:ONF 

0 14.84400 - 14.84467 0 0.49558 
I - 13.56033 - 13.56102 I 1.45859 
2 12.29389 - 12.29462 2 2.37950 
3 - 11.04534 - 11.04610 3 3.25052 
4 9.81540 9.81619 4 4.05845 
5 - 8.60485 - 8.60568 5 4.77345 
6 7.41460 -7.41548 
7 6.24566 6.24659 
8 - 5.09917 - 5.10015 
9 - 3.97645 - 3.97751 

10 2.87905 - 2.88020 
II - 1.80881 - 1.81007 
12 0.76796 0.76936 
13 0.24073 0.23915 
14 1.21368 1.21186 
15 2.14608 2.14388 
16 3.03095 3.02817 
17 3.85697 3.85271 
18 4.60115 4.58974 

that except for a small region near the top of the potential 
barrier, our analytic continuation of the BGNF series and its 
Pade approximation provides accurate classical results. 

B. Comparison of semiclassical and quantum energies 

Here we compare semiclassical and quantum energies of 
the ASDW oscillator for the sample parameter values men­
tioned above. The quantum energies Equant were obtained by 
diagonalizing a 1800 X 1800 Hamiltonian matrix generated 
by the basis set 

tPn = [[1 l[1Trn!] 1I2Hn (,8x)e (f32
x

2
)/2, 

where H n is the Hermitian polynomial of order nand [1 is an 
adjustable parameter. The value of the parameter 
[12 = 2.7482987390560 was obtained by minimizing the 
trace of the Hamiltonian matrix. The quantum energies ob­
tained in this manner are given in Table III. 

As mentioned in Sec. III, the semiclassical energies are 
easily obtained in the BG NF approach by setting the action 
Ko = m +! (where m is an integer) in the BGNF series 
(3.5) and its analytic continuation (3.14): We present in 
Table III only the Pade approximant results of these series. 
The ll"llmbers in columns 2 and 5 are taken from columns 2 
and 6 of Table I and those in column 8 are taken from col­
umn 2 of Table II. 

It can be seen from Table III that the BGNF approach 
provides the EBK energies of the ASDW oscillator for all 
values of the quantum number m in the interval O<;m<; 00. 

Except for a small region near the top of the barrier, the 
agreement between the semiclassical and quantum results is 
quite good. This agreement improves as m increases and the 
real benefit of the semiclassical approach is appreciated for 
the very large values of m for which the quantum calcula­
tions become prohibitive. It is interesting to notice how the 
semiclassical quantum numbers in the two wells are com-
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Equant n EBONF Equant 

0.49395 25 5.10449 5.16383 
1.45668 26 5.42899 5.42597 
2.37717 27 5.79067 5.80092 
3.24742 
4.05351 
4.76461 57 23.32457 23.32501 

58 24.05134 24.05177 
59 24.78519 24.78562 

100 59.98498 59.98526 
101 60.95061 60.95089 
102 61.92072 61.92100 

148 110.88764 110.88786 
149 112.03772 112.03794 
150 113.19113 113.19135 

bined to provide the starting quantum number in the region 
above the barrier height. Here we have 19 levels in the left 
well and six levels in the right well, giving the total of 25 
levels in the two wells. The first quantum number above the 
potential hump is 25, indicating the 26th level if the quantum 
numbers are counted from zero. This feature of the EBK 
quantum numbers is the same in the SDW and ASDW cases. 

V.SUMMARY 

In summary, we have presented the BGNF series for a 
general ASDW oscillator with a polynomial potential of de­
gree 4. By identifying this BGNF series as the inversion of a 
double-series involving hypergeometric functions, we were 
able to obtain expressions that are valid beyond the region of 
convergence of the original series. In turn, these expressions 
allowed us to demonstrate the practical usefulness of the 
BGNF approach in determining semiclassical energies, 
which were compared with the corresponding quantum en­
ergies. An interesting feature of the EBK quantum numbers 
is discussed. A rather surprising observation concerning the 
classical period in the two wells is also reported. 
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The scattering of a system of classical particles on the line with repulsive interactions is 
considered. The scattering is called regular if for any motion of the system the asymptotic 
velocities are distinct. It was known that the scattering is regular if the interactions decay 
sufficiently fast with the distance. Here the dynamics of repelling particles are put into the 
framework of Hamiltonians with cone potentials. The notion of regularity of scattering is 
defined for Hamiltonian systems with cone potentials and conditions for regularity are 
established that do not depend on the rate of decay of potentials at infinity. Then these results 
are applied to the scattering of repelling particles on the line. 

I. INTRODUCTION 

Consider the classical motion of n point masses 
ml, ... ,mn with repulsive interactions. Let the particles move 
in the space Rd of d dimensions and denote by X!>""Xn their 
positions and by xl"",Xn their velocities. It is known that the 
asymptotic velocities (at plus infinity, for concreteness) 

Xi (co) = lim Xi (t), i = 1, ... ,n, (1) 
1- 00 

exist for any trajectory of the motion. I,Z It is intuitively clear 
that for a typical trajectory the asymptotic velocities are dis­
tinct: 

(2) 

We call property (2) the regularity of asymptotic velocities. 
To study the scattering in classical mechanics,3 it is im­

portant to know that the asymptotic velocities are regular for 
all motions. Property (2) has been studied for one-dimen­
sional particles that cannot pass each other.4-6 In this situa­
tion it is known that if the interactions between particles 
decay fast with the separation, then the asymptotic velocities 
are regular for any motion. The fast decay condition seemed 
natural because it is also needed for the existence of asympto­
tic phases. 7 

A regularity property similar to (2) has been intro­
duced for the Hamiltonians with cone potential.s Such a 
Hamiltonian in the space of N dimensions is characterized 
by a proper cone C in RN, and the asymptotic velocity x( co ) 
of any motion {x (t) } exists and belongs to the dual cone C *. 
Let Int C denote the interior of C. The regularity property 
corresponding to (2) is 

x( co) E Int C*. (3) 

Under the fast decay assumption on the cone potential, (3) 

holds for all motions, and the fast decay is needed for the 
existence of scattering in the context of Hamiltonians with 
cone potentials.4 

Thus, so far, the regularity of asymptotic velocities (2) 
and (3) has been associated with the fast decay of interac­
tions, and therefore with the scattering. In Ref. 5, Hubacher 
has considered the systems of classical particles of equal 
mass m on the line interacting by a repulsive pair potential 
vex). The Hamiltonian of such a system is 

H=m IXT+IV(Xj-X;). (4) 
2 ;= I i<j 

Assume that the pair potential is repulsive, more precisely 
that it satisfies the following conditions. 

Repulsivity Conditions: Potential v is a positive continu­
ously differentiable function on (xo, co ), where - co <xo. 
Besides vex) --> co asx-->xo from the right, and v/(x) <0. 

Under these conditions, the limit of v(x), as x --> co, ex­
ists, and in what follows we assume without loss of generality 
that this limit is zero. No assumptions on fast decay ofv(x) 
as x --> co are made. 

Theorems: For particle systems with the Hamiltonian 
( 4), the repulsivity conditions are necessary and sufficient 
for the regularity (of asymptotic velocities) 

XI(co) < ... <xn(co) 

for all motions. 

(5) 

In this paper we extend the sufficiency part of Hu­
bacher's theorem. Namely, we show that the regularity (5) 

still holds when the repulsive pair potentials vij (x) are arbi­
trary, as long as they have, roughly speaking, the same rate 
of decay as x --> co. We also get rid of the assumption that the 
masses of particles are equal. To prove this result, we use the 
technique of cone potentials, and generalize the regularity 
(5) to a class of Hamiltonians with cone potentials. Hence 
our results separate the regularity of asymptotic velocities 
from the fast decay of interactions assumption. 

II. REGULARITY OF ASYMPTOTIC VELOCITIES FOR A 
CLASS OF CONE POTENTIALS 

Let II (x), Iz (x) be continuous positive functions de­
fined on (x I' co ), (xz, co ). Assume that as x --> co both func­
tions go to zero or to infinity. 

Definition I: We say thatll andlz have the same rate (of 
decay or growth) at infinity if 

!.(x)llz(x) = 0(1), Iz(x)lll(x) = 0(1), (6) 

as X--> co. 
The following is a variation of a lemma from Ref. 5. 
Lemma I: Assume that the functionsll (x), Iz (x) have 

the same rate of decay at infinity and that s:!. (x )dx < co for 
some a > XI' Letx l (t) ;>x l andxz(t) ;>xz be continuously dif-
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ferentiable for t;;;.O, withx l (t) --+0 and x2 (t) --+ b > 0 as t--+ 00. 

Suppose that 

1"0 II(x l (t»)dt < 00. (7) 

Then for any E> 0 there is 1';;;.0 such that, for t> T, 

FO 12(X2 (1') )d1' < E FO II(x l (1') )d1' < 00. (8) 

Proof Clearly, x 2 (t) --+ 00 as t--+ 00. By (7), XI (t) --+ 00, 

also. Indeed, if this is not the case, then, since x I (t) is bound­
ed, there is L > 0 such that X I (t) < L for all t. Then, for any T, 

(/1(XI(t»)dt;;;.[ min l(x)]T, (9) Jo x.,x<L 

contradicting (7). 

For T large enough, the following inequalities hold for 
all t> T: 

xl(t) <x2(t), Ixl(t)1 <Eb12, x2(t) >b/2. ( 10) 

Then, for t> T, 

~ II (x I (1') )d1' b foo 
2 t 

;;;.\ foo II(x l (1'»)dx l (1') \ 

= roo II (x)dx;;;' roo II (x)dx 
)x1{l) JX2(t) 

= iI(X2( 1'»)X2 (1')d1';;;'- !J(x2 (1') )d1'. f
oo b foo 

t 2 I 

Hence, for t> T large enough, 

foo II(xz(1'»)dn;;E f>e !J(x l (1'»)d1'. (11 ) 

Since X 2 --+ 00, by (6), for t> T large enough, 

foo 12(X2(1'»)d1''';;c foo !J(x2(1'»)d1', (12) 

with some positive constant c. Combining ( 11) and ( 12), we 
obtain Lemma 1. 

Denote by (x, y) the inner product in the Euclidean 
spaceJRN and set IIxllz = (x,x). Recall thataconeCin JRNis 
called proper if C does not contain a straight line. Let e I'" .,e n 

be arbitrary nonzero vectors. The set 

C = { .i r;e;, r;;;;.o} 
l= 1 

is the cone spanned by el, ... ,en • The dual cone C * consists of 
vectors e* such that (e*,e;);;;' 0 for all e;. 

With any vectors el, ... ,en in JRN, any continuously differ­
entiable functions V; on (a;. 00 ), a i ;;;' - 00, and a positive 
definite matrix M (mass matrix), we associate the Hamilto­
man 

H=~ (Mx,x) + ± vi«x,e). 
2 i=1 

(13) 

The corresponding dynamics xU) takes place in the region 

n = {x: (x,e;) > a;. i = 1, ... ,n}. 

The limit x ( 00) = lim x (t), as t --+ 00, if it exists for a given 
trajectory x (t), is called the asymptotic velocity at infinity. 
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In what follows we assume that the potentials Vi (r) sat­
isfy the repulsivity conditions of Sec. 1, and that the cone C 
spanned by el, ... ,en is proper. Then (13) is a Hamiltonian 
with the cone potentialS 

n 

Vex) = L vi«x,ei »· (14) 
i= 1 

For such Hamiltonians the asymptotic velocities x( 00 ) exist 
for all motions and x ( 00 ) E C * (see Ref. 8). 

Definition 2: We say that a motion xU) has a regular 
asymptotic velocity (at plus infinity) ifx( 00) E Int C*. 

Theorem 1: Let the derivatives /;(r) = - v;(r), 
i = 1, ... ,n, have the same rate of decay as r--+ 00. Then every 
motion of the Hamiltonian dynamics defined by (13) is reg­
ular. 

Proof: Using a simple transformation,4 we reduce the 
situation to the case M = 1, i.e., the Hamiltonian is 

H=~llxI12+ ± v;«x,ei »· 
2 ;= I 

(15) 

Denote x( 00 ) by b. Then 

(b,ei);;;.O, i = l, ... ,n, (16) 

and b E Int C * if and only if we have strict inequalities in 
( 16). We assume that b does not belong to C * and relabel the 
vectors ei so that 

(b,e;) = 0, i = 1, ... ,m;;;'l, 

and (17) 

(b,e;) > 0, i = m + 1, ... ,n. 

Denote by Co the cone spanned by el, ... ,em • Since Co C C, 
the cone Co is proper, and the intersection Int Co n Int C t 
is not empty. 

Denote by F(x) the force vector at x, i.e., 
n 

F(x) = - grad Vex) = L - v; «x,e) )ei 
;= 1 

n 

= L /;«x,e)e;. (18) 
i= 1 

The equation of motion corresponding to (15) is 

.!£x(t) = F(x(t)}, (19) 
dt 

and, for any vector e, 

d . n 
- (x(t),e) = L /;(x(t),e;»)(e;.e). (20) 
dt ;=1 

Hence 

f"" d 
- (x( 1'),e)d1' 

I dt 

= (b,e) - (xU),e) = itl [fOO /;(x(1'),e»)] (e;.e). 

(21) 

Taking e from Int C *, we obtain that 

foo /;(x(1'),e))d1'< 00, (22) 

for all i. By the proof of Lemma 1, (x (t),e) --+ 00 , as t --+ 00 , 

for all i. 
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Let now e E Int Co n Int C~. Rewriting (20) as 

d . m 
- (x(t),ei ) = L /;(x(t),ei»)(ei,e) 
dl i=1 

n 

+ L /;(x(t),ei»)(ei,e), (23) 
;=m+l 

integrating (23) from t to infinity, and using that (h,e) = 0, 
by assumption, we obtain 

(x(t),e) = - i~1 LX> /;(x(r),ei»)(ei,e)dr 

- i= t+ IF" /;( (x( r),ei ) )(ei,e)dr 

,- i~1 (ei,e) foo /;(x(r),e,»)dr 

+ i=t+1 l(eoe)1 foo /;(x(r),ei»)dr. (24) 

For i = 1, ... ,m, (ei,e) > O. By Lemma 1, for any £ > 0 we can 
find T such that, for t> T, 

i= t+ I I (eoe) I foo /;( (x( r),ei ) )dr 

(25) 

Taking £ = !, we obtain from (24) and (25) that, for t large 
enough, 

(26) 

Therefore (x (t) ,e) is bounded above as I ..... 00, contradicting 
the assertion (x(t),e i ) ..... 00, for all i, obtained earlier in the 
proof. This contradiction proves the theorem. 

Discussion: Consider the dynamics x(/) defined by the 
Hamiltonian (13) where the vectors e\, ... ,en span a proper 
cone C. Although the repulsivity ofthe potentials Vi is essen­
tial for the asymptotic velocities x( (0) to be regular, the 
other condition of Theorem 1 is not necessary, in general. 
Consider, for instance, the Hamiltonian (13) with an expo­
nential cone potentialS 

V( ) _ ~ - ai(x,e,} 
x-£.. cie , (27) 

;=1 

with ci,a i > 0, for i = l,oo.,n. The functions/; (r) = aicie - air 

have the same rate of decay at infinity only if a I = ... = an' 
Nevertheless, the asymptotic velocity x( (0) exists and is 
regular for any motion.4 

Let vex) satisfy the repulsivity conditions of Sec. I, and 
consider the special class of Hamiltonians (13): 

(28) 

with C\'OO"Cn > O. For the Hamiltonians (28) the rate of de­
cay assumption of Theorem 1 is satisfied automatically. 
Hence Theorem 1 and the preceding discussion imply the 
following. 

Corollary 1: For the Hamiltonians (28) the repulsivity 
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of V is necessary and sufficient for the asymptotic velocity 
x( (0) to exist and be regular for all motions. 

Consider n repulsive potentials VI (r),oo"vn (r) satisfying 
the assumption of Theorem 1, i.e., the derivatives v; (r) have 
the same rate of decay as r ..... 00 • Recall that we have assumed 
throughout that vi(r) ..... O as r ..... 00. Since 

vi(r) = -1 00 

v;(s)ds 

and since, for any i,j, 

Iv;(r)l,const Iv;(r)l, 

for r large enough, potentials Vi (r) satisfy Definition 1, i.e., 
all Vi have the same rate of decay as r ..... 00 • The converse fails, 
in general. Assume now that the functions Vi (r) satisfy a 
stronger-than-Definition-l assumption: 

lim Vi (r)/vj (r) ::;f0, for all i,j. (29) 
r_ 00 

Then, by l'Hopital's rule, 

lim v;(r)/v;(r) = lim vi(r)/vj(r)::;fO, (30) 
r_ 00 r __ 00 

for all i,j, which implies the following. 
Corollary 2: Let VI (r) 'OO"Vn (r) be repulsive potentials 

satisfying Eq. (29). Then all the motions of the dynamics 
defined by the Hamiltonian (13) have regular asymptotic 
velocities, i.e., x ( 00 ) E Int C *. 

III. REGULARITY OF ASYMPTOTIC VELOCITIES FOR 
MANY-BODY PROBLEMS ON THE LINE 

We apply the results of Sec. II to the scattering of classi­
cal particles on the line. First, we consider the particles inter­
acting by directed repulsive forces. The Hamiltonian of such 
a system has the form 

~ m i ' 2 ~ 
H = £.. -2 Xi + £.. Vii (Xj - Xi)' 

;= 1 i<j 

(31) 

with pair potentials Vii (r) satisfying the repulsivity condi­
tions. 

Theorem 2: Iftheforces/;j(r) = - vij(r) have the same 
rate of decay as r ..... 00 or ifthe pair potentials satisfy 

lim Vii (r)/vkl (r) ::;f0, (32) 
r_ 00 

for all pairs i <j, k < I, then the asymptotic velocities Xi ( 00 ) 

for any motion satisfy the regularity condition (5). 

Proof Consider the space RN with the standard basis 
e\,oo.,eN • The vectors ej - eo i <j, span a proper cone Cwith 
the dual cone C* = {xl,oo·,XN }. Setting x = (x\,oo.,xN ) 

and M = (ml,.oo,mn ) the diagonal mass matrix, we rewrite 
(31) as 

H =.!. (Mx,x) + L Vii «x,ej - ei », 
2 i<j 

(33) 

which is a Hamiltonian of the form (13). We have 

Int C* = {XI < ... <xN }. 

Now Theorem 1 and Corollary 2 imply the assertion. 
Let us consider a special class of the Hamiltonians (31 ) : 
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(34) 

where cij > 0 and the potential vCr) is arbitrary. 
Corollary 3: All of the motions {Xi (t), 1 <i<N} defined 

by the Hamiltonian (34) have regular asymptotic velocities 

xl(oo)<"'<xN(oo) 

if and only if vCr) is a repulsive potential. 
Proof The assertion follows immediately from the proof 

of Theorem 2 and Corollary 1. 
Remark: Setting in Corollary 3, m I = ... = m Nand 

taking the cij all equal, we recover Theorem 1 of Ref. 5. 
Now we consider particles on the line interacting by 

central repulsive forces, and assume that the particles cannot 
pass each other. The Hamiltonian of such a system is 

~ m i ' 2 ~ 
H= if-I TXi + f0 vij(lxi -xj !>, (35) 

where vij(r) are repulsive potentials on (0,00). 

Theorem 3: Assume that the forces /;j (r) = - vi; (r) 
have the same rate of decay as r-- 00, or that the potentials 
vij (r) satisfy condition (32). Then the asymptotic velocities 
Xi ( 00 ) are distinct: 

xl(oo)#"'#xN(oo), (36) 

for any motion defined by the Hamiltonian (35). 
Proof Since the particles cannot pass each other, the 

configuration space is the disjoint union of regions of the 
form {Xi < ... < X j }. In any such region we relabel the par-, N 

ticles so that it becomes {XI < ... <xN } and apply Theorem 
2. 

Corollary 4: Consider the dynamics of particles on the 
line with the Hamiltonian 

~ m i ' 2 ~ I H= £.. -Xi + £.. cijv(lxi -Xj ), 
i= I 2 i<j 

(37) 

with cij > O. 
The asymptotic velocities Xi (00) for any trajectory of 

the dynamics defined by the Hamiltonian (37) are distinct if 
andonly if V is a repulsive potential on (0,00). 

Proof Just as in the proof of Theorem 3, we reduce the 
situation to the one considered in Corollary 3. 

In applications, one is often led to consider the Hamilto­
nians (31) and (35) with some potentials vij equal to zero, or 
to the Hamiltonians (34) and (37) with some cij = O. For 
instance, the Hamiltonian of the nearest neighbor interac-
tion, 

(38) 

is a special case of (31) with vij = 0 for i - i> 1. 
More generally, let Pbe a set of pairs (i <i), l<i,i<N, 

and consider the N-particle Hamiltonian 

~ m i ' 2 ~ H= £.. -Xi + £.. vij(Xj -Xi)' 
i=12 (i<j)EP 

(39) 

where the pair potentials vij (r), (i <i) E P, satisfy the repul­
sivity requirements of Sec. I. In the system (39) the masses 
mj and mj interact by the directed repulsive force 
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lij = - vi; (Xj - Xi) if (i <i) E P and they do not interact if 
the pair (i,i) does not belong to P. 

Theorem 4: Consider the system of particles with the 
Hamiltonian (39), and assume that P contains the set 

Po = {(i,i + 1), l<i<N - n. 
Ifthe forces /;j (r) have the same rate of decay for all 

(i, i) E P, or if the potentials v ij (r) and v kl (r) satisfy (32) for 
all pairs (i,i) and (k,/) from P, then the asymptotic veloc­
ities Xj ( (0) for any motion satisfy the regularity condition 
(5). 

Proof As in the proof of Theorem 2, we consider the 
cone Cp spanned by the vectors ej - ei for (i <i) E P. Obvi­
ously, Cp belongs to the cone C spanned by all vectors 
ej - eo i <}. Since the cone corresponding to Po is equal to C, 
the inclusion Po C P implies C P = C. The rest of the 
proof of Theorem 2 goes through and proves the assertion. 

Corollary 5: Consider the nearest neighbor Hamiltonian 

N m. N-I 
H = 2: -' X7 + 2: CiV(Xi + I - Xi)' 

i= I 2 i=1 

(40) 

with Ci > O. The asymptotic velocities of all motions of the 
system (4) are regular {XI (00) < ". <XN (oo)} if and only 
if v is a repulsive potential. 

Proof' Follows from Theorem 4 the same way Corollary 
3 follows from Theorem 2. 

The situation is more complicated for the central repul­
siveforces (35), if we allow vij = o for some pairs (i <i). Let 
P be a set of pairs (i <i) and consider the Hamiltonian 

We assume that all pair potentials vij (r), (i <i) E P, are re­
pulsive with v ij (0) = 00. This means that the configuration 
space X is divided into N! regions, 

X = {x. < ... <x } 
W', 'N ' 

where w = (i1, ... ,iN) are permutations of (1,2, ... ,N). For 
any permutation w, we set Pw = {(i\,i2 ), .. ·,(iN_1 ,iN )}. 

Theorem 5: Consider the system of particles with the 
Hamiltonian (41). Assume that all forces have the same rate 
of decay at infinity or that the pair potentials satisfy condi­
tion (32). 

If P contains Pw then the region Xw is invariant under 
the dynamics, and for any motion in Xw the asymptotic ve­
locities satisfy 

Xi, (00) < ... <XiN ( (0). (42) 

In particular, the asymptotic velocities for any motion in Xw 
are distinct. 

Proof' For a domain Xw we relabel the particles in an 
obvious way, and obtain the Hamiltonian (39), while Pw 

becomes Po. Now we apply Theorem 4 and obtain the asser­
tion. 

Discussion: If P contains the sets P w for all w, then P 
contains all pairs (i <i); hence Theorem 3 applies. On the 
other hand, if P does not contain P w for some w, then we 
cannot guarantee that the motions starting in Xw have regu­
lar asymptotic velocities. 
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Example: Consider the system of three particles with 
the Hamiltonian 

H = ~(xi + x~ + x~) + v( IXI - x 2 !) + v( Ixz - x 3 1), 

(43) 
where vCr) is a repulsive potential. By Theorem 5, in the 
region {XI <X2 <X3} we have XI (00 ) <x2 ( 00 ) <X3( 00 ). 

But in the region {x I < X3 < x 2} we can only assert that the 
asymptotic velocities satisfy X I ( 00 ) <x2 ( 00) and X3 ( 00 ) 

<X2 ( 00). 
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For higher-order Kadomtsev-Petviashvili (KP) equations, the existence of explicitly time­
dependent constants of motion is discussed. Generalizing the results for the ordinary KP 
equation, constants T ~';) polynomial in t are constructed for each I th order KP equation, for 
all n~m (/ - 1) - 1. 

I. INTRODUCTION 

A lot of attention has been recently paid to the Kadomt­
sev-Petviashvili (KP) equation I in the study of several dif­
ferent physical problems. 2 

It has been shown that the KP equation is a completely 
integrable Hamiltonian system,3,4 i.e., possessing an infinite 
number of constants of motion in involution. According to a 
theorem by Case,s these constants are generators of symme­
tries of the equation. Later on, it was found that the KP 
equation has an infinite number of "new" constants that are 
polynomials in t. More precisely, Chen et al. 6. 

7 derived a set 
of explicitly time-dependent symmetries for both integrable 
nonlinear evolution equations with one spatial dimension 
(for example, the Korteveg-de Vries equation) and with 
two spatial dimensions (namely the KP equation). In one 
spatial dimension, these new symmetries are in general sym­
metries of the equation without being Hamiltonian symme­
tries, in the sense that no corresponding constants of motion 
can be found. Instead, for the KP equation, the new symme­
tries are related to explicitly time-dependent constants of 
motion, and in Ref. 8 it has been shown that for all n~O, 
there are n + 2 constants and one pseudoconstant (whose 
appearance is due to the existence of Casimir invariants, and 
which does not generate a symmetry). 

The fact that the infinite set of the "old" (time-indepen­
dent) constants are in involution means that the KP equa­
tion is but one of a hierarchy of equations, which is simply 
obtained by considering these constants as Hamiltonians. 

In the last few years, several authors have investigated a 
KP hierarchy resulting from the compatibility conditions of 
a hierarchy of systems of linear equations.9 This hierarchy 
consists of nonlinear partial differential equations in an in­
creasing number of independent variables. 

Here we want to show that for each member of the first 
hierarchy there is an infinite set of new symmetries polyno­
mial in t, and how these can be constructed. We will proceed 
by induction, moving up from the already known result 
about symmetries linear in t of the higher-order KP equa­
tions. 1O 

II. KP EQUATION AND ITS GENERAL PROPERTIES 

We take the KP equation in the form 

q, = a x- I a; q - ax [3q2 + qxx ]. (1) 

This equation can be put in Hamiltonian form, 

q, = [q,H], (2) 

by taking as Hamiltonian 

(3) 

[F.G] =faF a aG. 
, aq Xaq 

(4) 

Here, and in the following, we make the convention that 

(5) 

If we write Eq. (1) in the form 

q, =K(q), (6) 

then a solution u of the linearized equation 

u, =K'(u), (K'(U) = ~K(q+EU)IE=O). (7) 

is called a symmetry of the equation. We will say that this is a 
Hamiltonian symmetry if a functional C can be found such 
that u is of the form 

(8) 

Then II C is a constant of motion. 
The explicitly time-dependent symmetries found by 

Chen et al.,7 together with the previously known ones, con­
stitute an infinite-dimensional Lie algebra. As mentioned 
above, the new symmetries are Hamiltonian. 12 Therefore, 
we can consider the Lie algebra of the corresponding con­
stants with the Poisson bracket as Lie product, and commu­
tation relations8 

[
c(m) c(r)] = r(n + 1) - m(s + 1) c(m+r-lJ (9) 

n , s. 3 n+s-2 , 

where the general form of C ~m) is 

c(m)= ~(m)tm-kJ(k) (10) 
n k~O k n , 

as given in Ref. 8, where also the J~k) are constructed and 
some of them found explicitly. For each n~O there are n + 2 
constants c~m), m = O,l, ... ,n + 1, and one pseudoconstant 
C ~n + 2). The constants C ~m) are obtained from C ~n + 2) by 
repeated differentiation, and the pseudoconstant is con­
structed from the Casimir invariant 
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J(n+2) = -_I_f y n+2 q 
n 18 ' 

(11) 

by taking repeated Poisson brackets with the Hamiltonian. 
For m = 0 we have the time-independent constants. The 
first few of them are 

C(O)=J(O) - f q2 C(O)=J(O) - J.- fqa -I a q 
0-0- 6' 1-1-

3 
x y' 

C iO) =nO) = H, 

CiO)=JiO) = f{2qxqy + ~q(a;lay)3q 

- 4q2a x-I ayq}. 

The fact that the Poisson bracket (4) in the case of the 
KP equation is singular, i.e., that there are Casimir invar­
iants, means that formula (9) is not correct for arbitrary 
indices. In the following, we will assume that m, n, r, and s 
are chosen in such a way that C ~m), C ~r), and C~: ~ ~"2 I) are 
constants, i.e., that for fixed nand s, m and r satisfy 

m<:;n + 1, r<:;s+ 1, 

m + r<:;n +s. 
(12) 

Then formula (9) is correct (see Appendix A). Moreover, if 
we look at the terms in (9) which are not explicitly time 
dependent, we see that similar commutation relations hold 
for the J ~m)'s: 

[
J(m)J(r)] = r(n+ 1) -m(s+ 1) J(m+r-I) 

n , s 3 n+s-2 . 
( 13) 

III. THE HIGHER-ORDER KP EQUATIONS 

The infinite hierarchy of KP equations is given by 

q, = KI(q), 1 = 0,1, ... , (14) 

with 

(15) 

These equations are Hamiltonian with Hamiltonians 
HI = J iO), and they all are completely integrable. 

We now want to see whether there are constants polyno­
mial in t for Eq. (14) for arbitrary I. For 1 = 0 and 1 = 1, we 
have two degenerate cases (corresponding to the equations 
q, = qx/3 and qt = 2qy/3, respectively) that will be treated 
separately in Appendix B. Here we will assume 1>2. Write 

T(m) = i: (m)t m- k L (k) 
n,l k~O k n.1 , (16) 

with 

(17) 

For fixed I, T~j) will be constant of the Ith order KP equa­
tion if and only if 

L~~/-I = - (1/k)[L~~),JiO)], k= 1, ... ,m. (18) 

This is equivalent to the requirement that 

oq= [q, T~j)] 

be a solution of 
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(19) 

oqt =K;(oq). (20) 

With oq chosen as in Eq. (19) we have 

d m ( m ) -oq= ~(m-k+l) tm-k[qL(k-I)] 
dt k"':-I k - 1 ' n,1 

(21) 

By the Jacobi identity, the second term on the right-hand 
side becomes 

[[q, T~j)],JiO)] 

= - [[ T~j),JiO)],q] - [[ JiO),q],T~j)]. (22) 

But, using the fact that [L ~~/, J jO)] = 0 and Eq. (18), we 
have 

[[ T~j),JiO)], q] 

= - k~ 1 (~) kt m - k [ L ~~ - I), q] . 

Equation (21) finally reads 

!!...oq=[[q J(O)] T(m)]. 
dt ' I , n,1 

(23) 

(24) 

Since oq is of the form (8), from the theorem proved in Ref. 
12 we know that 

(25) 

and by comparing Eqs. (24) and (25) we conclude that oq is 
a solution of the linearized Ith order KP Eq. (20). 

We now construct T~j). For m = 0, we have [see Eq. 
(17) ] 

T~~/=L ~~) = J~O). (26) 

For m = 1, the construction is given in Ref. 10, where it was 
found 

T~? = tL ~~l + L ~,?, (27) 

with 

L~? =(3/(/+ 1»)J~I~/+2' (28) 

for fixed I and for all n> - 2. We will discuss this last condi­
tion on n later on. 

For the generic m = k, we have to look for L ~y. As­
sume that 

3k - 1 
L(k-I)- Pk-I) . (29) 

n,1 - (/+I)k-1 n-(k-I)(/-2) 

Then, using Eq. (18) we obtain 

J(k-I) -[pO) U+l)k-I L(k)] (30) 
n- (k-I)(/-2) - I' k 3k - 1 n,l' 

From the commutation relations (13) we have 

[Jj0l,J~k)] = (k(/+ 1)/3)Ji:~~2' (31) 

Let n-n - k(/ - 2). Equation (31) becomes 

J~k_(1)_I)(/_2) = [Jj°l,(3/k(/+l))J~k~k(/_2)]' (32) 

Comparing Eqs. (30) and (32), we find 

L (k) _ 3
k 

J(k) 
n,1 - (/+ l)k n-k(/-2» (33) 

which is exactly Eq. (29) with k - 1 replaced by k. 
In this way, we can construct for each Ith order KP 
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equation (/">2) the polynomial constants T~j). We must 
notice though that our procedure is correct only if no Casi­
mir invariants appearin Eq. (31) [or, that is the same, in Eq. 
(32) ]. From Eq. (32) with k = m, and recalling thatJ ~r) is 
a Casimir invariant when r = s + 2 (while it is not for 
r<,s + 1), we see that for L ~7) to be well defined we have to 
require the condition m<,n - m(/ - 2) + 1, i.e., 

n"> m (/ - 1) - 1. ( 34 ) 
For fixed n and I, the largest integer m for which (34) is 
satisfied is 

[~], 1- 1 
(35) 

where [ ... ] indicates the integer part. 
We therefore conclude that for each I th order KP equa­

tion (/">2), for each n">O there are [(n + 1 )/(/ - 1)] + 1 
constants, for m=O,I, ... , [(n+ 1)/(/-1)]. As I in­
creases, for fixed n, we find fewer and fewer constants. 

The possibility of constructing pseudoconstants for I th 
order KP equation (and then obtaining the real constants by 
repeated differentiation) is discussed in Appendix C. 

APPENDIX A: COMMUTATION RELATIONS FOR THE KP 
EQUATION 

Let us prove that the commutation relations (9) hold 
when C ~m), C ~r), and C ~': ~~2 I) are all three constants. Us­
ing (10) we have 

[ crm) c(r)] 
n , s 

=tm+r[J(O) J(O)] 
n , s 

+tm+r-l{m[J~I),J~O)] +r[J~o>'J~I)]} 

+ terms oflower order in t. (AI) 

We now apply the commutation relations found by Chen et 
al.,7 

[ J (0) J (0)] = 0 
n 's , 

[J(O) J(I)] = [en + 1)/3] Jro) 
n , s n+s-2' 

(A2) 

(A3) 

and obtain 

[c(m) c(r)] = tm+r-I{ r(n + 1) - m(s+ I)} J(O) 
n , s 3 n+s-2 

+ terms oflower order in t. (A4) 
Assuming that there exists a unique constant C ~ ': ~..':. 2 I), 
whose leading term is t m + r - I J ~o~ s _ 2' we conclude that 
the right-hand side of (A4) must be equal to 
{r(n + I) - m(s + 1 )}/3 times C ~': ~..':.2 I), that is 

[c(m) Crr)] = {r(n + I) -m(s+ I)} c(m+r-I) 
n , s 3 n+s-2 . 

(A5) 
An interesting question is now to see whether Eq. (A5) 

is correct when either C ~m) or C ~': ~..':.2 I) is a pseudocon­
stant. 

If C~':~..':.21) is to be a pseudoconstant, then we can 
show with an example that (A5) cannot be valid in general. 
From Ref. 8 we have 

1252 

q,l) = t J~O) + J~I), 

J(O) - f q2 J(l)­° - 6' 0-
__ 1 fxq 

18 ' 
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(A6) 

and 

C ~2) = t 2 J iO) + 2t J i I) + J i2), 

JiO) = H, J~I) = f {q~ + q yea x~ I ay q
)}, (A7) 

J ~2) = - _1_ f x 2q + 1-f y 2q2. 
18 6 

Explicit calculation shows that 

[C~I),Ci2)]= -!{t2J~0)+2tJ~I)+A} (A8) 

where A (the time-independent term) is formally 

A = --1-f y 2q+-1-fx2
• (A9) 

18 108 

We recognize the first term to be the Casimir invariant J ~/) , 
but we also have a meaningless term. Meaningless terms will 
arise whenever we take the Poisson bracket [F, G] of two 
functionals of the form 

F= J j(x,y)q, G = J g(x,y)q. (AlO) 

It is easily seen that functionals of this form are present 
among the J ~m)'s beside the Casimir invariants J ~n + 2). Let 
us recall that8 

J~n+I)= -(1!(n+2»)[J~n+2),H], 

J~n)= -(l!(n+l»)[J~n+I),H]. 

Then we have 

J(n+l) = _ n+ 1 Jynxq 
n 18 ' 

and J ~n) contains a term proportional to fyn - 2x2q. 

(All) 

(A12) 

A problem similar to the one just discussed above is 
encountered if, in Eq. (A5), c~m) is a pseudoconstant. Of 
interest for the question of the existence of pseudoconstants 
for higher-order KP equations (see Appendix C) is whether 
the relation 

[c(n+2) c(r)] 
n 's 

= r(n+1)-(n+2)(s+1) c(n+r+l) r<"s+l, 
3 n+s-2' '" 

(A13) 

holds, and in particular, whether it is true that 

[J(n+2) J(O)] = _ (n+2)(s+ 1) pn+ l ) (A14) 
n 's 3 n+5-2 . 

We have not been able to prove (A 14), and we can only say 
that [J ~n + 2), J ~O)] does not produce meaningless terms. In 
fact, from (All) we see that J ~n + 2 - k) contains yn + 2 - 2k, 

and therefore J ~O) does not contain terms of the form (A 10). 

APPENDIX B: DEGENERATE CASES 1= 0 AND '= 1 

Let us consider the two degenerate cases I = 0 and I = 1. 
Equation (14) becomes 

q, = jqx (B1 ) 

and 
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q, = Jqy, 

respectively. 

(B2) 

Let us define for 1 = 0, 

L ~~d = 3k J ~k~ 2k, (B3) 

and for 1=1, 

L ~~/ = (~) k L ~ k2 k • (B4) 

For each n, L ~~ and L ~~/ are never Casimir invariants for 
arbitrary k;;.O. Therefore, in these cases we find for each n;;.O 
an infinite number of constants T ~J)' m = 0,1, .... 

As a consequence of this result, we can remove the pre­
viously imposed condition 1;;.2, and apply Eq. (33) for all 
1;;.0, and for n;;.k(l- 1) - 1. 

APPENDIX C: PSEUDOCONSTANTS FOR HIGHER­
ORDER KP EQUATIONS 

We discuss here the possibility of constructing pseudo­
constants for higher-order KP equations. 

Suppose that 1 ( ;;. 2) and n satisfy the condition 

1 - {n + I} (l - 1) = 2, ( C 1) 
/- 1 

where { ... } indicates the fractional part. Then for 
m = [( n + 1) 1 (I - 1)] + 1, define 

(C2) 

L ~J) is a Casimir invariant since from (C 1) it follows that 

m = n - m (l - 2) + 2, (C3 ) 

and so J~":.}m(/-2) is a Casimir invariant. For 
m = [(n + 1 )I(l - 1)] + 1, T~J) contains a Casimir in­
variant and is therefore a pseudoconstant. 

Let us now suppose that Eq. (A14) holds. Then 

[L~Jl,Htl = -mL~J-\)' (C4) 

and L ~~), for k<.m - 1, can be found from L ~J) by taking 
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repeated Poisson brackets with the Hamiltonian HI' 

Explicit formulae can be given. Set m = [(n + 1)/ 
(/ - 1)] + 1, and define [L ~~>, Htl k by 
[L (m) H ] L (m) d h . I' n.I' I 0= n,l' an t e recursion re atlOn 

[ 
(m) ] [[ (m) ] L n,l , HI k = L n,l ,HI k _ l' HI]' (C5) 

with k = 1,2, ... ,m. Then 

T(m) = ~ (_1)s tS[L(m) H) 
n,l s~o s! n,l' I s' 

(C6) 

and 

( _ l)r T(m - r) _____ -'-_-'-___ _ 

n.l - m(m + 1) ... (m + 1 - r) 

m - r ( _ 1)s _ 
X L , tS[L~J),Hds+r (C7) 

s=o s. 
for r = 1,2, ... ,m. 
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A new decomposition of exact solutions to the scalar wave equation into bidirectional, forward 
and backward, traveling plane wave solutions is described. The resulting representation is a 
natural basis for synthesizing pulse solutions that can be tailored to give directed energy 
transfer in space. The development of known free-space solutions, such as the focus wave 
modes, the electromagnetic directed energy pulse trains, the spinor splash pulses, and the 
Bessel beams, in terms of this decomposition will be given. The efficacy of this representation 
in geometries with boundaries, such as a propagation in a circular waveguide, will also be 
demonstrated. 

I. INTRODUCTION 

The possibility of solutions of the wave equation that 
describe localized, slowly decaying transmission of energy in 
space-time has been suggested by several groups in recent 
years. These include efforts on "focus wave modes", 1-5 
"EDEPT's,,,6-9 "splash modes",I0·11 "EM missiles", 12-16 
"Bessel beams",17-22 "EM bullets,,23,24 and "transient 
beams."s.25-29 Much of this work was actually motivated by 
the pioneering work of Brittingham. I It has been recently 
discovered that these original focus wave modes represent 
Gaussian beams that translate through space with only local 
deformations and are the fundamental modes of a class of 
solutions that describe fields that originate from moving 
complex sources.2 In particular, the scalar wave equation in 
real space, viz., 

(1.1 ) 

with a wave speed normalized to unity, has as an exact solu­
tion, the moving, modified Gaussian pulse 

\lip (r,t) = eiP(z+ r)(e-Pp'IV /41TV) . (1.2) 

The complex variance 1/ V = 1/ A - i/ R yields the beam 
spread A = a l + (;2/a l, the phase front curvature 
R = (; + aU(;, and beam waist w = (A /p> 1/2. Here, 
(; = z - t and p denotes the radial cylindrical coordinate. 
The fundamental pulse (1.2) describes a Gaussian beam 
that translates through space-time with only local varia­
tions. It represents a generalization of earlier work by Des­
champs30 and Felsen31 describing Gaussian beams as fields 
radiated from stationary complex source points. 

As discussed in Ref. 9, the fundamental Gaussian pulse 
has either a plane wave or a particlelike character depending 
on whether {3 is small or large. Moreover, for all {3 it shares 
with the plane wave the property of having infinite energy. 
However, as with the plane waves, this is not to be consid­
ered as a drawback per se. The above solution procedure has 
introduced an added degree of freedom into the solution 
through the variable {3 that can be exploited. As shown in 

Refs. 2 and 5-9, fundamental Gaussian pulse fields, corre­
sponding to different values of {3, can be used as basis func­
tions to represent new transient solutions of Eq. (1.1). In 
particular, the general electromagnetic directed energy 
pulse train (EDEPT) solution 

\II(r,t) = loo d{3\11p(r,t)F({3) 

= d{3 F({3) e - Ps(p.z.r) ( 1.3 ) 1 loo 
41T[a l + i(z - t)] 0 ' 

where 

s(p,z,t) =p2/[a l +i(z-t)] -i(z+t), (1.4) 

is an exact source-free solution of the wave equation. This 
representation, in contrast to a plane wave decomposition, 
utilizes basis functions that are more localized in space and 
hence, by their very nature, are better suited to describe the 
directed transfer of electromagnetic energy in space. The 
resulting pulses have finite energy if the function F({3){3 - 1/2 

is square integrable.9 

As reported in Ref. 2, the superposition ( 1.3), with the 
"complex traveling center wave" basis functions, has an in­
verse. The functions 

4>p (p,(;,rf) = 8,[ii e - (?; 14Pa,)'\11 P (p,(;,r/l , (1.5) 

with 1] = z + t, are orthogonal to the \lip. This means these 
basis functions satisfy the completeness relation 

f-+ 0000 d1] f-+ 0000 d(; loo dp p4>~ (p,(;,1]) \11 P' (p,(;,1]) 

= 8 ({3 - {3 ') , ( 1. 6) 

where 4>~ is the complex conjugate of 4> p. Hence an inver­
sion of the superposition (1.3) exists. 

Clearly, different spectra F({3) in Eq. (1.3) lead to dif­
ferent wave equation solutions, and hence, to different solu­
tions of Maxwell's equations. Many interesting solutions of 
the wave equation can be created by simply referring to a 
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Laplace transform table. One particular interesting spec­
trum selection, recognized by Ziolkowski,6 is the "modified 
power spectrum" (MPS) 

F({:J) = [p/r(q) ](p{:J - b)q-Ie - [(pp-b)a,l , {:J>blp, 

= 0, b Ip>{:J>O. ( 1.7) 

It is so named because it is derived from the power spectrum 
F({:J) = {:Jq- I exp( - {:Ja2 ) by a scaling and a truncation. 
This choice of spectrum leads to the MPS pulse 

1 e- bslp 

\II (r,t) = ( 1.8) 
41T(a l +it) [a2 +slp]q 

Solutions to Maxwell's equations follow naturally from 
these scalar wave equation solutions using a Hertz potential 
formulation. 

The MPS pulse, for example, can be optimized so that it 
is localized near the direction of propagation and its original 
amplitude can be recovered out to extremely large distances 
from its initial location. This is demonstrated in Fig. 1, 
which shows surface plots and the corresponding contours 
plots of the electromagnetic energy density U of a TE elec­
tromagnetic MPS pulse relative to the pulse center locations 
at z = 0.0 km and z = 9.42 X 109 km. The MPS parameters 
are a2 = 1.0 m, q = 1.0, b = LOX 1014 m-I,p = 6.0X 1015

, 

and a l = LOX 10-2 m. The energy density U is normalized 
to its maximum value at t = O. The transverse space coordi-

nate p is measured in meters; the longitudinal space coordi­
nate t = z - t is the distance in meters along the direction of 
propagation away from the pulse center z = ct. These results 
definitively show the localization of the field near the direc­
tion of propagation over very large distances. 

The MPS pulses are being characterized further and po­
tentiallaunching mechanisms are under investigation. How­
ever, it was recognized by Besieris and Shaarawj32 that the 
representation ( 1.3) and its inverse has a generalization that 
can be exploited to explain these and other localized, slowly 
decaying solutions in a single framework. This new represen­
tation is the main purpose of this paper. It is based on a 
decomposition of exact solutions of the scalar wave equation 
into bidirectional, forward and backward, traveling plane 
wave solutions. The resulting representation is a natural ba­
sis for synthesizing pulse solutions. The derivation of this 
representation from a general operator embedding scheme 
will be described in Sec. II. The connections between this 
decomposition and various localized, slowly decaying solu­
tions will be made explicit in Sec. III. In Sec. IV, the bidirec­
tional representation will be extended to other classes of 
equations, e.g., the Klein-Gordon and the dissipative scalar 
wave equations that model wave propagation in dispersive 
and dissipative media, respectively. A specific demonstra­
tion of the efficacy ofthe new representation will be given in 
connection with an initial-boundary value modeling an infi-

MODIFIED POWER SPECTRUM PULSE 

EM ENERGY DENSITY 

PULSE CENTER = O.OOkm PULSE CENTER = 9.42)( 10
9
km 

FIG. I. The field energy of the electromagnetic MPSpulse is shown for the parameters: u, = 1.0m,q = 1.0, b = 1.0X 1014 m-',p = 6.0X 10'5, andu2 = 0.01 
m. 
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nite waveguide excited by a localized initial pulse. A sum­
mary of the results in this paper will be provided in Sec. V. 

II. BIDIRECTIONAL PLANE WAVE DECOMPOSITION 

The Cauchy problem 

[a;+O(-IV)]u(r,t)=O, rER 3, t>O, (2.la) 

u(r,O) = uo(r) , U t (r,O) = ul(r) , (2.lb) 
A-

where u is a real scalar-valued function and 0 is a positive, 
self-adjoint, possibly pseudodifferential operator, can be 
used as a mathematical model for a large number of physical 
situations. 

A Fourier synthesis of the solution to the Cauchy prob­
lem (2.1) can be effected as follows33: 

u(r,t) = 2 Re{'I' (r,t)} ; (2.2a) 

'I'(r,t) =_1_ r dkF(k)e-i(k.r-!l"'(k)/); (2.2b) 
(21T)3 JR' 

F(k) = J.-[u (k) _ i ul (k) ]. (2.2c) 
2 0 OI/2(k) 

The complex value signal 'I' is generated via a linear superpo­
sition of plane waves propagating in the k direction with 
phase speeds OI/2(k)/lkl. These plane waves are character­
ized by wave vectors k and they are weighted by the Fourier 
spectrum F(k). 

Equation (2.2) constitutes a mathematical solution to 
the Cauchy problem (2.1). However, for purposes of later 
comparison, the superposition (2.2b) can be recast in a more 
general form as follows: 

'I'(r,t) = _1_ r dk r dw F(k,w) 
(21T)4 JR' JR' 
Xe- i(k'r - ,o/)o[ _ w2 + O(k)] . (2.3 ) 

The spectra entering into Eqs. (2.2b) and (2.3) are linked 
through the relationship 

A-

F(k) = F(k,O(k» . 
41TIO I12 (k)I 

(2.4) 

Conditions can also be specified under which 'I' is square 
integrable, or, even further, under which the solution u(r,t) 
of (2.1) is a finite energy signal. There is, however, a basic 
drawback associated with the Fourier method; namely, that 
in most cases the integral for 'I' can be computed only ap­
proximately by a variety of asymptotic approaches, such as 
the method of stationary phase/saddle point,34.35 ray-theor­
etic techniques36,37 and phase space methods,38 or can be 
carried out numerically. Very few exact analytical solutions 
to (2.2b) are available, even for the simple, single mode dis­
persion relationship W=OI/2(k) = (k 2 +J.L2)1/2 corre­
sponding to the Klein-Gordon equation. 

The Cauchy problem (2.1) will be used in the sequel as a 
vehicle for presenting a new principle of superposition that 
provides more freedom and flexibility when dealing with 
certain classes of solutions, e.g., the EDEPT solutions to the 
scalar wave equation. 

Different types of supe1l!ositions are obtained by divid­
ing the operator L = [a; + a ( - IV) ] into parts, each hav­
ing its own eigenfunctions. A general solution can be con-
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structed from the product of such eigenfunctions, together 
with a constraint relationship between their eigenvalues. 
The manner in which the operator L is partitioned deter­
mines the form of the final superposition. For example, the 
Fourier decomposition follows from partitioning L into two 
parts:L I = a; andL2 = O( -IV). The superposition (2.3) 
contains the constraintw = 0 1/

2 (k) relating the eigenvalues 
of L 1 and L2 corresponding to the eigenfunctions 
exp( + iwt) and exp( - ik· r), respectively. 

In general, the operator L can be partitioned in many 
different ways. Consider, for example, the preliminary split-

A-

ting ofthe operator O( - IV) as follows: 
A A A A 

O( -IV) =A( -iaz ) + [O( -IV) -A( -iaz )] 

A- A-

=A( - iaz ) +B( -IV p - iaz ). (2.5) 

The operator A ( - iaz ), which mayor may not be a natural 
A-

part of 0 ( - IV), is assumed to be positive, self-adjoint and 
the choice of the preferred variable z is arbitrary. By taking 
the Fourier transform with respect to the transverse compo­
nents, the complex wave function 'I' (r ,t) can be expressed as 

1 i - . 'I'(r,t) = -- dK tP(K,z,t)e- 1K
'

P , 
(21T)2 R' 

(2.6) 

with ¢(K,Z,t) governed by the equation 

[ 
2 A. A. - (2.7) a/ +A( - i az ) + B(K, - iaz )]tP(K,Z,t) = O. 

A. 

The operator L=a; + O( - K, - i az ) can now be par-
titioned as follows: 

a2 A. • 

LI = / +A( -laz ) , (2.8a) 

L 2 =B(-K,-iaz )' (2.8b) 
The most natural eigenfunctions of the operator LI are given 
by 

tPe (z,t) = e - ia(;eiP", , 

where {; and 1] are defined as follows: 

(;=z- tsgn(a)a-1A 1/2(a) , 

1] = z + t sgn({3){3 -IA 1/2({3) . 

(2.9) 

(2.10a) 

(2. lOb) 

The corresponding eigenvalues, denoted by A (a,/3) , are giv­
en explicitly as follows: 

A(a,/3) =A({3-a) - [A(a) +A({3) 

+ 2 sgn(a)A 1/2(a)sgn({3)A 112({3)]. (2.11) 

The elementary functions (2.9) consist of products of two 
plane waves traveling in opposite directions, with wavenum­
ber-dependent phase speeds equal to sgn(a)a-IA 1/2(a) 
and sgn({3){3 -IA 1/2({3), respectively. 

The bilinear functions (2.9) are also eigenfunctions of 
L 2, with corresponding eigenvalues equal to B( - K,/3 - a). 
As a consequence, a linear superposition of the bidirectional 
elementary solutions tP e results in a solution of Eq. (2.7), 
viz., 

¢(K,Z,t) = r da ( d{3 C(K,a,p) 
JR' JR' 
Xe- ia(;e

i/3"'o[A(a,{3) + B( - K,{3 - a)] , 
(2.12) 

where the constraint A(a,{3) + B( - K,{3 - a) = 0 is in­
cluded in the integration. A general solution to Eq. (2.1) can 
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be obtained by resorting to a transverse Fourier inversion 
[cf. Eq. (2.6)]; specifically, 

'I'(r,t) = _l-z f dK e- ilC'p r da r d{3 C(K,a,{3) 
(21T) JR' JR' JR' 
Xe-ia~eiP'1D[A(a,{3) +B( -K,{3-a)]. (2.13) 

This representation constitutes a generalization of the three­
dimensional !:ourier synthesis [cf. Eq. (2.3)]; in the latter, 
the operator A ( - iaz ) was chosen to be a constant given by 
the relations 

sgn(a)A IfZ(a) + sgn({3) A IfZ({3) = m (2.l4a) 

and 
a -{3= kz • (2.14b) 

The main advantage of this decomposition is the intro­
duction of the embedded operator A ( - iaz ). This provides 
a fresh approach for addressing different classes of problems. 
At the same time~the flexibility that one can enjoy through a 
clever choice of A ( - iaz ) may open the way to approach 
some of the more impenetrable problems. 

To clarify these ideas, consider specifically the case of 
!!te three-dimensional scalar wave equation for which 
n ( - IV) = - VZ

• The operator L, in this case, assumes the 
form L = a i - V2 and Eq. (2.la) simplifies to 

[a;-V2 ]u(r,t) =0. (2.15) 

In cylindrical coordinates, the Laplacian V2 can be written 
as follows: 

V2 =a; +a; +p-I ap +p-2a~. 

In the usual Fourier decomposition, the operator L is divid­
ed into two parts: 

L 1 = -[a;+a;+p-lap+p-2a~], (2.l6a) 

(2.16b) 

The eigenfunctions of L 1 are J n (Kp ) e ± imp e ± ik,z and 

N n (Kp)e ± in-Pe ± ik,z, where I n (Kp) and N n (Kp) are Bessel 
functions of the first and second kind, respectively, and the 
eigenvalues equal ~ + k ;. The operator Lz has eigenfunc­
tions e ± i,"' with eigenvalues - mZ

• An elementary solution 
to the scalar wave equation (2.15) can be written as 
\TI ( ) _ [A J ( ) B N ( )] ± inq, - i(k,z ± M') 
't" e r,t - n n Kp + n n Kp e e , 

(2.l7a) 

with the constraint 

~ + k; - m2 = 0 . (2.17b) 

Neglecting the terms N n (Kp) because of their infinite values 
at p = 0, one obtains a special case of the superposition (2.3) 
that gives the general Fourier synthesis solution to the scalar 
wave equation: 

1 00 i oo f + 00 f + 00 'I'(r,t) = --2 L dK dm 
(21T) n~O 0 - cc - 00 

X dkz An (m,kz,K)K I n (Kp)e ± inq, 

Xe-ik,ze+i'Mfj(m2_~_k;). (2.18) 

Next consider the choice A ( - iaz ) = - a; which re­
duces Eqs. (2.10) to 

~ = z - t and 7J = Z + t . (2.19) 
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The operator L can be written, in this case, as 

L = - [4a ~'1 + a; + p - lap + p - 2 a ~] , 

and it can be partitioned as follows: 

LI = - [a; +p-I ap +p-2 a~] , 

L 2 = -4a~'1' 

(2.20a) 

(2.20b) 

The eigenfunctions of L1 are given now by I n (Kp)e ± in'" 
and N n (Kp)e ± in"" and its eigenvalues equal +~. The oper­
ator L2 has eigenfunctions e - ia~eiP'1 with eigenvalues 
- 4a{3. An elementary solution to the scalar wave equation 
(2.15) can be written as 

'I' e (r,t) = 'I' e (p,~,7J) 

= [CnJn (Kp) + DnNn (Kp) ] e ± in"'e - ia~eiP'1 , 

(2.21a) 

with the constraint 

a{3= ~/4. (2.21b) 

This constraint limits the value of a and {3 either to be both 
negative or both positive. A general solution to the scalar 
wave equation can be written in the nonconventional form 

1 + I "" 1"" 1"" 'I'(p,~,rf} = -2 2 L L dK d(la) 
( 1T) I~ _ 1 n~O 0 0 

I#'O 

X 100 

d(l{3) Cn (/a,I{3,K)K I n (Kp) 

X e ± in"'e - ila~eiIPnfj(a{3 - ~ /4) . (2.22) 

The two representations [cf. Eqs. (2.18) and (2.22)] 
may appear to be very different. There exists, however, a one 
to one correspondence between these two superpositions 
through the change of variables 

k z = a - f3, m = a + {3 . (2.23) 

By using these relationships, the new representation (2.22) 
can be transformed into the Fourier synthesis given in Eq. 
(2.18), with the following connection between their spectra: 

An (m,kz,K) =2Cn [!(m+kz ),!(m-kz ),K]. (2.24) 

It should be noted that this transformation requires a careful 
handling of the limits of integration. A complete discussion 
of this point will be given later when dealing with specific 
examples. 

The representation (2.22) provides a fresh path through 
which exact solutions to the scalar wave equation can be 
obtained. Although such a representation is not a familiar 
one, solutions obtained using (2.22) can still be easily trans­
formed into the more popular Fourier superposition, and 
one can link the bidirectional results to the more convention­
al Fourier interpretation. To emphasize these ideas, one can 
remove the constraint in (2.18) by integrating over m, hence 
reducing (2.18) to a form similar to (2.2), with 

1 00 i"" f+oo 'I'(r,t) = -- L dK 
(21T)2n~OO -00 

X dkz [An [ ~ ~ + k; ,kz,K] e - i(k,z - ~K' + k; I) 

+ An [ - ~ ~ + k ; ,kz ,K ] 
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X 
-i(kzZ+~K'+kzt)] KJn(Kp) ±in; 

e e . 
2~1(2 + kz 

(2.25) 

This is a special case of the superposition (2.2) and consists 
of the sum of two components, one traveling in the positive Z 

direction and the other in the negative z direction. A com­
mon problem that arises when dealing with such integrals is 
associated with the branch-cut type singularities. These can 
pose significant difficulties even when the integrals are 
solved either asymptotically or computed numerically. On 
the other hand, when the constraint is integrated out of Eq. 
(2.22), one obtains 

1 '" Sa'" Sa'" IJI (p,;,rJ) = --2 L dK 
(21T) n~O 0 0 

- C (- ~ - f3 K) e(i,2/4P)~ e - $71] 
n 4f3 ' , 

X .!..In(Kp)e±in;. 
f3 

(2.26) 

Similar to the Fourier synthesis where one can choose either 
the positive or negative w branch, we can choose to work 
with either the positive or the negative branch of a and f3. In 
what follows, for convenience only, we choose the positive 
branch. Notice that, unlike Eq. (2.25), the terms in the 
above integral consist of products of two plane waves travel­
ing in opposite directions. An important characteristic ofthe 
representation (2.26) is that the branch-cut singularities in 
Eq. (2.25) have been converted into algebraic singularities. 
This provides a novel approach to finding solutions to the 
scalar wave equation. New exact solutions can be obtained 
by choosing appropriate spectra Cn , for which the corre­
sponding Fourier spectra A n might be very complicated and 
could not have been guessed. Moreover, because of the na­
ture of the branch-cut singularities in the Fourier synthesis, 
problems arise because of their multivaluedness and because 
large oscillations accompany any attempt to evaluate them 
either numerically or asymptotically. We have found that 
one can circumvent such problems by dealing with the bidi­
rectional synthesis and its tame algebraic singularities. 

A number of important mathematical issues dealing 
with the new bidirectional synthesis will be considered at 
this point. These will include the completeness of the expan­
sions (2.22) and (2.26), the inversion properties for 
C n (a,f3,K), and conditions that must be imposed on the spec­
trum in order to ensure square integrability. The feasibility 
of solving Cauchy initial value problems on the basis of the 
new representation will be addressed in Sec. IV. 

Completeness follows directly from the fact that the 
superimposed functions are either exponential or Bessel 
functions, which are both orthogonal functions and form 
their own complete sets. However, the inversion of 
Cn (a,f3,K) is not obvious. A generalization of Ziolkowski's 
formula ( 1.6) had to be used. Using the positive f3 branch in 
(2.26), IJI (p,;, 1/) can be constructed as follows: 
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1 + 00 roo roo 1 
lJI(p,;,1/) = (21T)2 n~~oo Jo dK Jo df3 p 

xC (~ f3 K)KJ (Kfl)ein;e- (iK'/4P)~eiP71. 
n 4f3" n r 

(2.27) 

The inversion formula corresponding to this superposition is 
given by 

( ~ ) 1 f+1I" f+oo Cm -,f3,K =- dtfJ d; 
4f3 4[i -11" -00 

xe-~2/16P2J_+0000 d1/ Loo dppJm(Kp) 

XIJI(p,;,1/)e - im;e(iK'/4P)~e - $71 . (2.28) 

Note the appearance of the Gaussian measure over;. A simi­
lar measure occurred in Ziolkowski's inversion (1.6). How­
ever, in the more general inversion (2.28) the additional 
parameter a l has disappeared. The validity of the inversion 
will be demonstrated below in connection to specific exam­
ples. 

To investigate the possible restrictions on the spectrum 
Co that would ensure square integrability of the solution, one 
can consider the integral over f3 in Eq. (2.27), namely, 

t/J(z,t) = Loo df3 ~ Co(~ ,f3,K)e- i,2(Z-t)/4PeiP(z+t). 

(2.29) 

By rearranging the variables in the exponentials, one obtains 

t/J(z,t) = roo df3 ~ Co(~ , f3,K) Jo f3 4f3 

xexp [ - iZ(~ - f3) ]exp[it(~ + f3)] , 

or 

t/J(z,t) = Loo df3 ~ Co( ~ , f3,K) 

[ iKZ(2fl K)] Xexp 2" -;- - 2fl 

[
Kt(i2f3 K )] 

Xexp "2 -;- - i2f3 . (2.30) 

By using the Laurent expansion of the Bessel generating 
function, viz., 

exp[~(t - ~)] = Y I n (x)t n , 

2 t n~-oo 
(2.31 ) 

the exponentials in (2.30) can be rewritten as 

[
iKZ(2fl K)] +'" [2f3]n exp - - - - = L (i)nIn(KZ) - , 
2 K 2fl n~-oo K 

exp[Kt('2/3 _ ~)] = Y (i)mJm(Kt)[ 2fl]m 
7 K 12/3 m~-oo K 

By using these expansions, Eq. (2.30) can be rewritten as 

+'" +00 

t/J(z,t) = L L CmnIn (KZ)Jm (Kt) , (2.32a) 
n=-oom=-oo 

where 
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(00 [2(3]m+n (K- ) Cmn = Jo d(3 ---;: r+nco 2(3,(3,K . (2.32b) 

A necessary condition for the convergence of (2.32a) is 
that C mn < 00 for all values of m and n ranging from - 00 to 
+ 00. By considering the integral (2.32b), it is then obvious 

that Co(K-I(3,(3,K) should obey the conditions 

. 1 (K- ). hm-Co -,(3,K < 00, 
{3-0 (3' 4(3 

(2.33a) 

lim (3 'Co (~ , (3,K) < 00 , 
{3- = 4(3 

(2.33b) 

for arbitrary (3, and r = m + n, for any integer values of m 
and n. A good candidate is a spectrum of the form 

Co(~ , (3,K) =(3'exp [ -(3a l + ~ a2 ]. (2.34) 

This is similar to the one used for the splash pulses and 
EDEPT solutions, as will be demonstrated in Sec. III. 

In summary, the procedure described in this section 
provides an alternate way of synthesizing solutions to differ­
ent partial differential equations. Such representations are 
characterized by different types of singularities that may fa­
cilitate their asymptotic or numerical evaluation. This is a 
flexible procedure that changes with the types of equations 
considered. Moreover, solutions to the same equation may 
have different representations depending on how the opera­
tor L is partitioned. In Sec. III, the bidirectional representa­
tion (2.22) will be used as a natural superposition for the 
synthesis of Brittingham-like solutions, e.g., focus wave 
modes, splash pulses, Bessel beams, and EDEPT solutions. 
This will enable us to gain a better understanding of these 
unusual solutions, and by using the transformation (2.23), 
to obtain more information about their Fourier spectral con­
tent. Other types of equations, dealing with dispersive and 
dissipative problems, will be discussed in Sec. IV, where it 
will be demonstrated that the bidirectional representation 
can reduce the complexity level of such equations to that of 
the three-dimensional scalar wave equation. 

III. BIDIRECTIONAL PLANE WAVE DECOMPOSITION 
OF KNOWN SOLUTIONS 

It was demonstrated in the previous section that the 
main achievement of the embedding technique is to intro­
duce a time-symmetric bidirectional representation. For the 
scalar wave equation, such a representation is given in Eq. 
(2.22). It turns out that such a superposition provides the 
most natural approach for synthesizing Brittingham-like so­
lutions. This section is devoted, mainly, to substantiating 
this claim. Starting with the scalar analog of Brittingham's 
FWM's, it will be shown that by choosing very simple spec­
tra Cn (a,(3,K), mostly of the type given in Eq. (2.34), all 
known Brittingham-like solutions can be synthesized. Be­
cause of the simple transformation (2.23), it will be easy to 
transform such solutions to their Fourier picture, from 
which a basic understanding of their spectral content can be 
achieved. These examples can also provide a vehicle through 
which the inversion formula can be checked. The following 
discussion will be restricted to the zeroth order mode 
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(n = 0). This is a matter of convenience and does not affect 
the generality of the procedure. 

A. Focus wave modes 

The focus wave modes (FWM's) were originally stimu­
lated by the work of Brittingham, I who derived their vector 
form in connection with Maxwell's equations. Their scalar 
form was derived by Belanger,3 Sezinger,4 and Ziolkowski.2 

These modes, the zeroth order of which is given in Eq. (1.2), 
are characterized by an infinite energy content. Motivated 
by the bidirectional character of the solution (1.2), it will be 
shown below that the representation (2.22) can be used to 
synthesize the FWM's associated with the scalar wave equa­
tion. 

Consider the spectrum 

Co(a,(3,K) = ([Ii 12)ue - 0'{{3 - /3')'e - aa, . (3.1) 

Substituting it into Eq. (2.22) results in the expression 

1 i oo i oo i oo 

IIJ (p,;,1]) = --2 dK d(3 da 
(217') 0 0 0 

x[Iiu e-o'({3-{3'l'e-aa'KJo(Kp) 
2 

X e - iat;ei/3'1{j[a(3 - K-14] . 

An integration over a reduces Eq. (3.2) to 

lIJ(p,;,1]) = ~/2 ('" dK ('" d(3.!!... 
817' Jo Jo (3 

XJo(Kp)e - 0'(/3- {3'l'e - I<'(a, + it;l/4{3ei{3'1 • 

(3.2) 

By using equation (6.631.4) in Gradshteyn and Ryzhik,39 
viz., 

(00 dx xv+ Ie - aX'Jv (ax) = a
V 

e - a'/4a , (3.3) 
Jo (2a)v+ I 

the integration over K can be carried out explicitly, yielding 

IIJ( r ) _ _ u_ ('" d'(3 1 
P,,:>,1] - 4~/2 Jo (a

l 
+ it) 

X e-o'({3-{3'l'e-{3p'/(a, +it;l e i{3'1. 

To carry out the final integration over (3, Eq. (3.4621.1) in 
Gradshteyn and Ryzhik39 is used, viz., 

('" dxxv-le-yxe-/3x'= rev) er'/8{3D (_r_) 
Jo (2(3)v/2 - v ~2(3 , 

to give the solution 
e - o'{3" 

X e(A - i'1- 20'{3'l'/80'D (A - i1] - 2u2(3') 
-I V2u ' 

(3.4a) 

where D -I is the parabolic cylinder function of order - 1 
and 

A =p2/(a l + it) . 
The solution (3.4a) is a generalization of the scalar 

FWM's; the latter can be recovered by taking the limit 
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U-+ 00, for which the spectrum in (3.1) reduces to 

CO(a,{3,K) = (rr/2)ti({3-{3')e- aa,. 

In what follows, we shall use b to denote the part of the 
spectrum in (3.1) that reduces to the Dirac 8 function as 
U-+ 00. This will yield less cumbersome expressions and will 
make our discussion more transparent. As for the solution in 
(3.4a), it is more convenient to compute the limit u- 00 

after rewriting the parabolic cylinder function in an alter­
nate form using the identity (9.254.1) in Gradshteyn and 
Ryzhik,39 namely, 

D_,(z) =t!14~rr/2[1-$(z/v'2)], 

where $(z) is the probability integral defined as follows: 

$(z)=- e- t dt . 2 LZ 

2 

.[iio 
Rewriting the wave function (3.4a) in terms of the probabil­
ity integral, viz., 

- {J'(A - ;71) 
\{I ( /" ) = e e(A - ;71)'/40" 

P,~,'T/ 8 ( '/") rr 0, + l~ 

[ (
A - i'T/ )] X 1-$ ~ - u{3' , 

facilitates taking the limit U-+ 00 since $( - 00 ) = - 1. 
Hence as U goes to 00, the above expression reduces to the 
scalar FWM solution 

(3.4b) 

Felsen and Heyman25,29 have established the acausal na­
ture of the FWM's, in the limit where {3 I 01 ~ 1, using their 
approximate STT theory. The causality issue can be handled 
in a more direct way by transforming (3.2) into the Fourier 
picture using the relationships 

{3=~(w-kz), a=!(w+kz )' (3.5) 

If \{I (p,;,'T/) in Eq. (3.2) is rewritten as 

(3.6a) 

with 

ip(K,;,'T/) = r'" d{3 (00 da!!..b({3-{3') 
Jo Jo 2 

xe-aa'e-ia~ei{J71{j[a{3_ :], (3.6b) 

one can use Eq. (3.5) to express tp(K,z,t) as follows: 

ip(K,z,t) = (00 dkz (00 dw!!..b [_(W_-_k_z_) _{31] e-(a,/2)(w+kz ) 8 [_W_2 _ _ k_; _ ~]e-i(k.z-wt) 
Jo Jk, 2 2 4 4 4 

+[ dkzJ'" dw!!..l> [(w-kz ) _{31] e-(u,/2)(w+kz) 8 [:2 _ k} _ :]e-i(k.z-Wll. (3.7) 
- '" - k z 2 2 

An integration over w simplifies (3.7) to 

ip(K,z,t) = (oo dkz 2rr b [.Jk; +~ -kz - 2{3'] e-(O,/2)U k ;+K'+kz ]e- i(k.z-W1J 
Jo .J k; + ~ 

+ ("" dkz 2rr l> [.J k; + ~ + kz _ 2{3'] e - (u,/2) I ~ k; + K' - kz ] /(k.z + wI) , 

Jo .Jk; + ~ 
(3.8) 

where w = .J k; + ~ . Referring to Fig. 2, it is clear that the 
first integral in (3.8) vanishes for {3 '< K/2 while the second 
one vanishes for {3 I > K/2. As a result, \{I (r,t) can be divided 
into two parts, one traveling in the positive z direction and 
the other in the negative z direction, viz., 

\{I(r,t) = \{I + (r,t) + \{I- (r,t) , 

where 

1 i'" \{I + (r,t) =--2 dKKJo(Kp) 
(2rr) 213' 

X 1"" dkz F(kz,K)e-i(k.z-wt) , 

\{I- (r,t) = -1-2 (2{J' dK KJo(Kp) 
(2rr) Jo 

13' 
X 1 dkz F( - kz.K)/(k.z+wt) , 

and 
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(3.9a) 

(3.9b) 

If the parameter 0. is large, the spectrum F(kz,K) in 
(3.10) has a very narrow bandwidth, while F( - kz.K) can 

maintain a balance between .J k; + ~ and k" in the expo­
nential and, consequently, can have a much larger band­
width bounded by the upper limits of integration over K and 
k z in (3.9b). In this case, the predominant contribution to 
\{I (r,t) comes from \{I- (r,t). This contribution is primarily a 
nonlocalized plane wave moving in the negative z direction. 
If, on the other hand, 0. is very small, both F(kz,K) and 
F( - kz,K) have large bandwidths and because of the limited 
range ofintegration in the expression for \{I- (r,t) compared 
to the infinite range for \{I + (r,t), one expects that \{I + (r,t) 
becomes much larger than \{I- (r,t). In this case, the solution 
\{I (r,t) behaves like a localized pulse moving in the positive z 
direction. 
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-+--~--~t----~- (3.(3' 

k;=::.oo 

o 
" 

a 

4/J' 
(a) 

-2fJ' 2 .. ' iit- fJ k, 

(b) 

FIG. 2. The constraints all =';/4 and Il = Il' are shown in: (a) the all 
pianeand (b) the k,lUpiane. The contributions to '1'+ and '1'- are indicated 
by arrows. 

In closing this subsection, we shall check the validity of 
the inversion given in Eq, (2.28). A substitution of (3.4b) 
into Eq. (2.28), leads to the expression 

C (~ /3K) = fiT f+ "" d; e- t;'/16{3' f+ "" d1] 
0 4/3" 2 -00 -"" 

X (+ 00 dppJo(Kp) 4 /(3'71 .;) 
Jo 1T a l + I 

Xe-{3'p'/(a, + it;leUK'/4(3)t;e- i{371. (3.11) 

Integrating over 1] and making use of Eq. (3.3) in order to 
carry out the integration over p. it follows that 

Co(~ ./3,K) 

= fiT f+ 00 d;e- PI6{3'O(/3_/3,)_1_ e -K'a,/4{3'. 
8 -00 /3' 

The relation 

f
+ 00 

_ 00 d; e - t;'/16f3' = ~ 161T /3 

yields, finally, the result 

Co(,(1/4/3,/3,K) = (1T12)e-K'a,/4{30(/3_/3'), (3.12) 

which is identical to the spectrum given in Eq. (3.1) pro­
vided that a = ,(1/4/3. The latter follows from the constraint 
embodied in Eq. (2.21b). 

B. Splash modes 

The original "splash mode" was introduced by Ziol­
kowske as the first example of the class of finite energy solu­
tions constructed from superpositions of the original 
FWM's. Hillion lO

•
11 has extended the FWM and the splash 

mode concepts to the realm of spinors. Ziolkowski's splash 
pulse can be derived within the framework of the bidirec­
tional representation by choosing the spectrum Co (a,/3,K) as 
follows: 

(3.13 ) 

It should be noted that this choice is a specific example of the 
general class of spectra given in Eq. (2.34). Substituting 
(3.13) into Eq. (2.22) yields 

1 loo loo loo 1T lfJ(p,;,1]) = --2 dK d/3 da _/3q-1 
(21T) 0 0 0 2 

Xe- (aa, +f3a,lKJo(KP)e-iaSei{3710[a/3 _ :] . 

(3.14) 

The integration over a can be carried out explicitly, viz., 

1 loo loo lfJ(p,;,1]) = - dK d/3 
81T 0 0 

Equation (3.471.9) in Gradshteyn and Ryzhik,39 viz., 

(00 [a] [ a ] ql2 Jo d/3/3q-l exp - Ii - b/3 = 2 b Kq [2v'ab] , 

(3.15 ) 

facilitates the integration over /3; specifically, 

(3.16) 

where K q is the modified Bessel function of the second kind. 
To carry out the final integration over K, formula (6.576.3) 
in Gradshteyn and Ryzhik39 is used, viz., 

(00 dx x-l..K (ax)J (bx) = b Vr«v - A +,u + 1)/2)r«v - A -,u + 1)/2) 
Jo I' v 21..+1av-1..+1r(v+1) 

XF(v-A;,u+1, V-A~,u+l ,I, _ ~:). (3.17) 
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This leads to the result 

_ r(q) ( (a l + it) )(q-I)/2 'If (p,t,7]) - -- ...;.--!.-'--"'-'-
41T (a2 - i7]) 

XF(q, 1,1, - p2/[ (a l + it)(a2 - i7])]) , 

[(a l + it)(a2 - i7])] (q+ 1)/2 
(3.18) 

whereF(q, 1,1, - p) is the hypergeometric function. The lat­
ter has the property that 

F(q,I,I, - p) = 1/(1 + p)q. 

Hence (3.18) takes the form 

r(q) [ . p2]_Q 
'If(p,t,7]) = 41T(a

l 
+ it) (a2 -/7]) + (a

l 
+ it) , 

(3.19) 

which is identical to that for the splash pulse introduced in 
Ref.2. 

It is interesting to note in connection with Eq. (3.16) 
that the transverse components are separated from t and 7]. 

The portion of 'If (p,t, 7]) depending on {; and 7] only, viz., 

- _ ( (a l + it) )(q- 1)/2 
I/J(K,t,7]) =1T --=----=--

4(a2 - i7]) 

X~- IKq_ I [K~(al + it) (a2 - i7])] 

(3.20) 

is a solution to the one-dimensional Klein-Gordon equa­
tion. 

The scalar wave equation analog to Hillion's splash 
modes can easily be derived by choosing the spectrum 

Co(a,{3,K) = (1T/2)Jv ({3b)e- aa,. (3.21) 

In this case, 

'If (p,t,7]) = --2 dK d{3 da ~ 1 1"" 1"" 1"" (21T) 0 0 0 2 

or 

XJv({3b)e-aa'KJO(KP)e-ia~eiP1J8[a{3- :], 

(3.22) 

upon integrating over a. The integration over K can be car­
ried out using Eq. (3.3). One finds 

where 

s =p2/(a l + it) - i7]. (3.23 ) 

Using relation (6.611.1) in Gradshteyn and Ryzhik,39 viz., 

r"" dxe-axJv({3x) ={3 -V[~a2 +{32 - a]V, (3.24) 
Jo ~a2 + {32 

'If (p,{;,7]) assumes, finally, the form 

'If (p,t,7]) = 1 b-v[~?+b2_S]V 
41T(a l + i{;) ~? + b 2 

(3.25 ) 

which is a solution to the three-dimensional scalar wave 
equation analogous to Hillion's spinors. The Bessel function 
Jv ({3b) entering into the (3.21) forms a complete orthogo­
nal set. This means that any spectrum expressed as 

Co(a,{3,K) = (1T/2)F({3)e - aa, , 

with 

F({3) = L"" db B( b )Jv ({3b) , 

can result in the solution 

'If (p,t,7]) = 1. roodbB(b)b-v[~?+b2-s]V, 
41T(a l + l{;) Jo ~? + b 2 

(3.26) 

which is a generalization of HiIlion's result. 
The Fourier spectral content of Ziolkowski's splash 

pulse will be discussed in the next section in conjunction 
with the "modified power spectrum" (MPS) pulse. The 
Fourier picture corresponding to Hillion's solution can be 
obtained using the same procedure as in Sec. III A. Starting 
with the function 

tp(K,t,7]) = r"" d{3 roo da~Jv({3b) 
Jo Jo 2 

xe-aa'e-ia~eiP1J8[a{3_ :], (3.27) 

the relationships given in Eq. (3.5) can be used to find the 
corresponding Fourier representation; specifically, 

.I·(K Z t) = i"" dk 1'" dUJ ~ J [~(UJ - k )]e - (a,l2)(w + kZ)8[~ _ k ~ _ ~] e - i(k,z - ,,,I) 
'1'" z 2 v 2 z 4 4 4 o k, 

+[ dkzf'" dUJ'~J,.[~(UJ_kz)]e-(a'/2)('''+kz)8[~ _ k~ _ ~]e-i(k,z-'''I). 
_ '" - k, 2 2 4 4 4 

(3.28 ) 

By integrating over UJ, it follows that 

tp(K,z,t) = r"" dk
z 

1T Jv [~{~k; +~ -kz
}] e-(a,/2)[Jk;+K'+k,] e-i(k,z-wt) 

Jo ~k; +~ 2 

i"'dk 1T J [~{ Ik 2 ~ +k}] -(a,I2)[Jk;+K'-k,] +i(k,z-wt) + z v 2 V z+ z e e. 
o ~ k; + ~ 

(3.29) 
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It is seen, then, that 'II(r,t) can be divided into two portions, 
'11+ (r,t) and '11- (r,t), given by 

1 l"" l"" 'II+(r,t)=--z dKKJo(Kp) dkz 
(21T) 0 0 

X F(kz,K)e- i(k,Z-7dI) (3.30a) 

and 

(3.30b) 

where 

F(kz,K) = 1T J v [~{~k; +~ 
~k~ +~ 2 

+k
z
}] e-(u,/2)[Jk;+.r+k,]. (3.31) 

Unlike the FWM's, the spectrum in this case is not sin­
gular. As in the case of the FWM's, however, the '11- (r,t) 
part will predominate for large values of the parameter a l • 

On the other hand, the contributions from both parts of the 
spectrum are almost equal for small values of a I' This can be 
seen from the ratio 

J v [ ~ {~ k; + ~ - kJ] _ a k 

---------- e " 

J v [ ~ {~ k; + ~ + kJ) 

As indicated earlier, 

F(kz,K) ~F( - kz,K) 

for large values of a I' This is true for most of the frequency 
range contributing to the integrations (3.30a) and (3.30b). 
On the other hand, for a I very small, 

F(kz,K) =F( - kz,K) 

for the most significant components of this spectrum. 

C.EDEPT's 

These solutions, which were first introduced by Ziol­
kowski,8,9 have finite energy, are extremely localized and 
they are highly directive. Another important feature of these 
solutions is that they contain certain parameters that can be 
"tweaked up" so that a pulse is predominantly propagating 
in one direction. An interesting example of the EDEPT solu­
tions is the MPS pulse which can be synthesized in the con­
text of the bidirectional representation using the shifted 
spectrum 

Co(a,/3,K) = [1Tp!2r(q)](p/3-b)Q-1 

Xe - [aa, + (p{J- b)a,j, /3> b Ip, 

(3.32) 

A substitution of this spectrum into (2.22) leads to the fol­
lowing solution: 

1 l"" 1"" l"" 'II(p,;,7j) = --z dK d/3 da 
(21T) 0 blp 0 
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X~(P/3 - b)q-Ie - [aa, + (p/1-b)a,] 
2r(q) 

XKJo(KP)e-ia;-eif3'1I5[a/3- :1. (3.33) 

By integrating over a, it follows that 

'II(p,;,7j) =- dK d[JKJo(Kpl p, -1 l"" 1'" (f3 b)q-I 
81T 0 blp f3r(q) 

X e - .r(a, + i;-) /4f3e - (pfJ - b)a'eif3'1 . 

The integration over K can be performed by resorting to the 
change of variables /3 f = f3 - b Ip, and making use of Eq. 
(3.3) : 

IIJ (p,;,7j) = _1_ r"" d[J f pq/3 'q - I 

41T Jo r(q) 
- bslp 

X e-f3'(s+pa,) _e __ _ 

(a 1 + it) 
The integration over f3 I can be carried out explicitly, result­
ing in the wave function 

1 e- bslp 

lIJ(p,;,7j) = 41T(a
1 
+ it) [a

2 
+ slp]q' (3.34) 

which is identical to the MPS pulse introduced by Ziol­
kowski.8•9 

A detailed analysis of the behavior of the MPS has been 
presented elsewhere.8

•
9 Our main interest, at this point, is to 

transfer (3.33) into the corresponding Fourier representa­
tion in order to study the contributions from the positive­
and negative-going components of the solution. A procedure 
identical to that introduced earlier yields, in this case, 

ip(K,Z,t) = ("" dwf+ "" dk
z 
~ [L(w - k z ) 

Jo - DC 2r(q) 2 

-b e- a ,(w+kz )/2e- a ,(p(w-k,)12-b) 
]

q - I 

X 15 [:2 _ k} _ :] e - i( k z z - I"') 

for !(w - k z ) >blp, and 

ip(K,Z,t) = 0 

( 3.35a) 

(3.35b) 

for! (w + k z ) < b I p. The indicated ranges in the w,kz plane 
can be seen clearly by referring to Fig. (3b). Carrying out the 
integration over w changes (3.35) to 

X 
-a,p{~k;+"'-k,}/2 -i(kzz-lJI) e e 

for~k; +~ -kz >2blp, and 

ip(K,Z,t) = 0 

~or ~ k; + ~ - k z < 2b Ip. Solving for k z and splitting 
1jJ(K,Z,t) into positive- and negative-going parts, results, fin­
ally, in the components 
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", (ff 
".) ~ 
{j ) ~ 

p 

{j.~--+---~----~~----------

o 

(0) 

<oJ=-k r 

(b) 

K. 

FIG. 3. Theconstrainta/1 = K'/4and the lower bound/1 = b Ipofthe MPS 
pulse are shown in: (a) the a/1plane and (b) the kzwplane. The contribu­
tions to '1'+ and '1'- are indicated by arrows. 

(3.36b) 

where 

The strength of the MPS pulse arises from the intro­
duced asymmetry in the positive- and negative-going com-
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ponents. This can be easily demonstrated by examining the 
ratio 

F(kz,K)IF( - kz,K) = e(pa,-a,)k, 

for q = 1. By an appropriate choice ofthe parameters p, a I' 
and a2, the positive-going frequency components can be 
made much larger than the negative-going ones. This can be 
achieved by using large values of the product pa2• It is also 
straightforward to demonstrate that in the limb b--O and 
p--1 the MPS given in Eq. (3.34) is reduced to the splash 
pulse [cf. Eq. (3.19)]. Therefore, the Fourier spectral con­
tent of the splash pulse can be obtained directly from Eq. 
(3.36) by setting b = 0 andp = 1; specifically, 

(3.38a) 

with 

F(kz,K) =1T[!Jk; +~ -kz12]Q-1 

(3.39) 

To compare I{I+ (r,!) to I{I- (r,!), consider the following ra­
tio for q = 1: 

F(kz,K)IF( - kz,K) = e(a, - Q,)k, • 

It is clear from this expression that one can have a predomi­
nantly positive component if a2 is chosen to be large and a l 

very small. However, unlike the MPS pulse, the splash pulse 
is not localized in the transverse directions. This is due to the 
absence of the parameters band p that provide some control 
over the transverse localization through the factor 
exp( - bslp) in Eq. (3.34). 

D. Bessel beams 

The "Bessel beams" were introduced by Durnin20 and, 
like Brittingham's FWM's, they are characterized by an infi­
nite energy content. It is of interest that such beams have 
been realized experimentally,21 primarily because of the 
manner in which the behavior of an infinite energy beam can 
be realized approximately. It is possible to show that these 
beams can be represented by the time-symmetric bidirec­
tional superposition (2.22). One can choose, in this case, 

Co(a,{3,K) = 41TU1'e - u'(a + {3- wo)'e - r(a - (3- A)' , 

for which Eq. (2.22) specializes to 

1 Loo Loo Loo I{I (p,t,T]) = ---2 dK d{3 da 
(21T) 0 0 0 

X 41TU1"e - u'(a + {3 - wo)'e - r(a - (3- A)' 
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Integrating first over K, one has 

'II(p,;,TJ) = 2(Tr roo d{3 roo dae-u'(a+P-w.,)' 
1T Jo Jo 

Xe - r(a -P- A.)'Jo(2~a{3 p)e- ia~eiP"'. (3.42) 

This integration is very hard to evaluate exactly; neverthe­
less, an asymptotic solution can be obtained for large values 
of (Tr. Without any loss of generality we can take (T = rand 
Eq. (3.42) can be rewritten as follows: 

2cr 1
00 

Loo 'II(p,;,TJ) = - d{3 da 
1T 0 0 

Xe - u'[ w5 + ,,' - 2(A. + w.,)a - 2(w" - A.)P+ 2a' + 2P'] 

(3.43 ) 

This is a double integral of the Laplace type and can be evalu­
ated asymptotically for large cr. Following Bleistein and 
Handelsman,40 the function 

t/l(a,{3) = - [w~ + A 2 - 2(,,1, + wo)a 

- 2(wo - A){3 + 2a2 + 2{32] 

has critical points at t/la = t/lp = 0, or at 

ao = (wo + ,,1,)/2, {30 = (wo - ,,1,)/2. 

Since t/laa = t/lpp = - 4 and tPup = 0, it follows that 

t/laa (ao,{3o) < 0, t/lpp (ao,{3o) < 0, 

t/laa(ao,{3o)t/lfJfJ (ao,{3o) - t/l~p(ao,{3o) = 16>0, 

(3.44) 

(3.45 ) 

and the critical point given by (3.45) is a maximum. Hence 
the integration (3.43) can be approximated by 

21T(T- 2 eu'",( a".fJ.,) 
'II (p,;,TJ ) = ~============:::;;:::::=====­J t/laa (ao,{3o)t/lpp (ao,{3o) - t/l~p (ao,{3o) 

x 2cr Jo(2~aJ3oP)e-ia"~eifJ.''''+O«(T-2). 
1T 

Rearranging the terms and using Eq. (3.45), one gets 

'II(p,;,TJ) = Jo [Jw~ - ,,1,2 p] 

Xe-iA.(",+~)/2eiw.,(",-~)/2 + O«(T-2), (3.46) 

which in the limit (T-+ 00 reduces to 

'II(p,;,TJ) =Jo[ Jw~ -A 2 p] e-iA.(",+~)/2eiw"(,,,-~)/2. 

( 3.47a) 

Although the wave function given in (3.47a) was obtained 
from the asymptotic evaluation of the double integration 
(3.43), it turns out to be an exact solution to the scalar wave 
equation. In fact, it is same as Durnin's Bessel beam, which 
can be obtained by substituting 

;=z-t, TJ=z+t 

into Eq. (3.47a) and rewriting it as follows: 

'II(p,;,TJ) =Jo[Jw~ _A2p] e-i(A.z-w"t). (3.47b) 

As in the case of Brittingbam's FWM's, the spectrum asso­
ciated with a Bessel beam is singular; specifically, the spec­
trum given in (3.40) reduces to a product of two Dirac delta 
functions as (T goes to 00. On the other hand, the conversion 
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to a Fourier picture is trivial in this case since (3.47b) is 
totally traveling in the positive z direction. 

IV. EXTENSIONS OF THE BIDIRECTIONAL SYNTHESIS 

In this section, we shall extend the ideas discussed in 
Sec. II to other classes of problems. The most natural exten­
sion is an application involving the three-dimensional 
Klein-Gordon equation which describes the propagation of 
waves in a dispersive medium. Another one deals with the 
use of the bidirectional representation in connection with 
dissipative problems modeled, for example, by the three-di­
mensional dissipative scalar wave equation and the tele­
graph equation; in these cases the operator fi( - IV) is non­
positive. Using these two classes of problems, we shall show 
that solutions obtained via the bidirectional representation 
will be as easy to evaluate asymptotically or numerically as 
those for the three-dimensional wave equation. By virtue of 
this observation, new exact solutions can be obtained trivial­
ly using spectra similar to those in Sec. III. 

The spectral analysis in Sec. II was carried out over the 
{3-dependent part of the integral in Eq. (2.27). We were led 
to this procedure because the three-dimensional wave equa­
tion has the same structure as the one-dimensional Klein­
Gordon equation. In particular, a Fourier transformation 
with respect to the transverse coordinates x and y reduces 
the three-dimensional wave equation to a one-dimensional 
Klein-Gordon equation of the following form: 

[a; - a; + K] U (lI:,z,t) = 0 . (4.1) 

It should be observed that the functions [In (KZ)J m (Kt)] in 
the expression (2.32a) are not solutions to the one-dimen­
sional Klein-Gordon equation. Only their sums over integer 
values of m and n constitute a solution to ( 4.1) and a delicate 
balance between the coefficients of [In (KZ)J m (Kt) ] must be 
maintained in order to give finite solutions. 

A natural extension is the three-dimensional Klein­
Gordon equation describing the evolution of a signal propa­
gating in dispersive media. For this case, the operator 

fi( - IV) equals - V 2 + f.1? and Eq. (2.la) takes the form 

[a;-v2+,u2]u(r,t) =0. (4.2) 

A general solution to this equation is analogous to that given 
by (2.18), namely, 

u(r,t) = 2 Re{'II(r,t)}, 

where 'II(r,t) can be represented by the following bidirec­
tional superposition: 

I + 1 00 LOO 1"" 1"" 'II(p,;,TJ) = --2 L L dK d(la) 
(21T)I=-ln=OO 0 0 

1#0 

X d(l{3)Cn (la,l{3,K)KJn (Kp) 

X e ± in"'e - i1a~eilP"'8[ a{3 - ! (K + ,u2) ] . (4.3) 

In this case, a ~artitioning of fi ( -)V) was induced through 
the operators A ( - iaz ) = - a;, B( - II: - iaz ) = K + ,u2, 
and the new constraint relation is given by 
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(4.4 ) 

Using the relationship (2.23), the representation (4.3) can 
be transformed into the conventional Fourier picture; spe­
cifically, 

I 00 Loo 
f+oo 'I'(r,t) = --2 L dK dw 

(21T) n~O 0 -00 

X f-+ 00

00 

dkz An (W,kz,K)KJn (Kp)e ± in'" 

Xe-ik,Ze+ iW18(W2 _ K - k; - J.12) . (4.5) 

The only difference between (4.5) and (2.18) is the more 
complicated constraint relationship. For the problem under 
consideration, the constraint requires that 

(4.6) 

which recovers the well known energy relation 
E2 = p2 + J.1z. Recall that very few exact solutions to the 
three-dimensional Klein-Gordon equation are available. In 
this sense, the representation (4.3) is very valuable because 
it is characterized by the same algebraic singularities as 
(2.22). As a consequence, (4.3) allows the analytical com­
putation of a rich class of novel exact and approximate solu­
tions with as much facility as shown in Sec. III for the three­
dimensional scalar wave equation. For example, all the 
spectra used in Sec. III can be used trivially to reproduce 
new solutions to the three-dimensional Klein-Gordon equa­
tion. 

For physical situations requiring a nonpositive operator a ( - iV), e.g., those modeled by the dissipative scalar wave 
equation and the telegraph equation, one can still obtain 
novel, exact solutions using the bidirectional synthesis pro­
cedure. Along these lines, consider the three-dimensional 
dissipative scalar wave equation 

[J;- VZ+ (c i +CZ)J1 +clcz]'I'(r,t) =0, (4.7) 

which describes a wave traveling in a dissipative medium. 
Although Eq. (4.7) has a different structure than Eq. (2.1), 
an exponential transformation of the form 

'I'(r,t) = exp[ - !(cl + cz)t ]qJ(r,t) 

reduces it to 

[J; - VZ - !(ci - cz)Z]qJ(r,t) = 0, 

(4.8) 

(4.9) 

which is a special case of Eq. (2.1) with a ( - IV) 

= - VZ - (c i - cz)2/2. Notice that the above equation is 
similar to the Klein-Gordon equation (4.2) with an imagi­
nary J.1 [i.e., J.1z = - (c I - c2) 2/2]. The bidirectional repre­
sentation can be written directly as 

A 1 + I 00 Loo Loo 
'I'(p,;,rt> = -- L L dK d(la) 

(21T)/~_ln~00 0 

1",0 

X [00 d(lfJ) en (/a,I{3,K)KJn (Kp) 

X e ± in"'e - ila~eil(3'78[ a{3 

+ f(CI - c2)z _ :2] , (4.10) 

with the constraint 
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(4.11 ) 

The same discussion concerning the nature ofthe singulari­
ties of this solution follows automatically, except for the fact 
that the hyperbolic constraint (4.11 ) can lie in the second or 
the fourth quadrants of the a{3 plane for (c I - cz) z /2 > K, 
and in the first or third quadrants for (c I - c2 ) z /2 < K. This 
also explains the difference in the a and (3 limits of the inte­
gration in Eq. (4.10). 

The dissipative wave equation can be reduced to the 
telegraph equation by removing the dependence ofEq. (4.7) 
on the transverse coordinates x and y. The telegraph equa­
tion, which can be written as 

( 4.12) 

models the transmission of electromagnetic signals through 
wire cables. Using an exponential transformation of the form 

if!(z,t) = exp[ - !(c\ + cz)t ] ¢(t,t) , 

reduces the telegraph equation to 

[J;-J; -!(cI-CZ)Z] ¢(z,t) =0. 

(4.13 ) 

(4.14 ) 

A celebrated solution due to Lord Kelvin involves the choice 
CI = Cz. This restriction reduces Eq. (4.14) to a one-dimen­
sional scalar wave equation that has the distortion-free solu­
tions ¢(z - t) and ¢(z + t). In an attempt to find solutions 
to Eq. (4.14) in the general case where C\ "/=cz, one runs into 
the same complications as those discussed earlier in connec­
tion to the Fourier representation of the one-dimensional 
Klein-Gordon equation, or the three-dimensional scalar 
wave equation. An alternative is to use the bidirectional rep­
resentation 

I + \ 100 JO ¢(;,T/) = -- L d(la) d(l{3) co(a,{3) 
(21T) I~ _I 0 -00 

1",0 

xe-ila~eil(3'78[a{3+f(CI-CZ)Z] , 

with the constraint 

(4.15 ) 

a{3= - A(c\ - CZ)2. (4.16) 

(Only the second or the fourth quadrants of the a{3 plane 
need be used in this case since a and (3 must have different 
signs.) The Fourier synthesis corresponding to (4.15) can 
be obtained by using the transformation (2.23). This leads to 

¢(z,t) = - dw dkz An (w,kz ) I J+oo J+oo 
21T - 00 - 00 

xe-ik,ZeiWI8(wZ_k; + ~ (c\-cz)z), (4.17) 

with the constraint 

w2 
- k; = - !(c\ - cz)2. (4.18) 

One should not get the wrong impression that the meth­
od introduced in this paper will replace the Fourier synthe­
sis; on the contrary, the bidirectional synthesis complements 
it. As it was shown in Eq. (2.17), a Fourier decomposition is 
simply a special case of a general partitioning of the operator 
L. In many instances dealing with single frequency phenom­
ena, the Fourier synthesis is the most intuitive one; however, 
this does not rule out all other representations, particularly 
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when they can lead to new exact solutions. Consider, for 
instance, initial value problems. Even though the bidirec­
tional representation is characterized by an implicit depend­
ence on time through the variables t and 1], an initial value 
problem can still be handled successfully. As an example, 
consider the [A V: specific problem of pulse propagation 
through an infinitely long cylindrical waveguide. This prob­
lem is modeled by the three-dimensional scalar wave equa­
tion 

(V2 
- J;)u(r,t) = 0, 

with the initial conditions 

u(r,O) = F(p,z) , 

u, (r,O) = G(p,z) , 

and the boundary condition 

(4.19a) 

(4.19b) 

u(R,z,t) = 0, (4.19c) 

where p = R is the radius of the cross section of the wave­
guide. The functions F(p,z) and G(p,z) are assumed to be 
real. For this problem, it is advantageous to begin with the 
expression (2.27). A typical solution can then be written as 

u(r,t) =u(p,t,1]) = Co(K,/3)Jo(Kp)e- (i~/4{3)~ei{3T/. (4.20) 

Applying the boundary condition ( 4.19c), one obtains 
Jo(KR) = O. It immediately follows that KR = KOm ' where 
KOm are the zeros of the zeroth-order Bessel function. By 
summing over all modes and integrating over /3, the general 
waveguide solution can be given as 

XJo( Kr;P )e - i(~,"/4{3R ')~ei{3T/ • 

The initial condition (4.19a) is satisfied if 

F(p,z) = Re m~ 1 f" d/3 Co (KOm ,/3) 

(4.21 ) 

(4.22) 

The spectrum CO(KOm ,/3), which is, in general, a complex 
function of KOm and /3, can be determined by taking first the 
Fourier transform with respect to z and then the Hankel 
transform with respect to p in Eq. (4.22). This gives 

100 R 2 2 f + 00 dz 
f(Kom,kz ) = d/3-[J1(Kom )] -

o 2 -00 2 

X [ ( /3) - i(~,"/4{3R ' - {3 - k,)z 
Co K Om ' e 

+ *( /3) i(~,,,I4{3R'-{3+k,)z] 
~ ~m' e , (4.23 ) 

where C1;(KOm ,/3) is the Hermitian conjugate of Co (KOm ,/3), 
and f(Kom ,kz ) is defined as 

f(Kom ,kz ) = f_+ 00'" dz f: dp PJo( Ko;P )FCp,Z)e + ik, z • 

(4.24 ) 

By integrating the right-hand side of Eq. C 4.23) over z, it 
follows that 
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f(Kom,kz ) =~R2[J1(Kom)]2 ('" d/3 
2 Jo 

X [co(Kom ,/3)OC;; 2 - /3 - kz) 

+C1;(Kom ,/3)OC;;2 -/3 +kz)]. (4.25) 

By performing, finally, the integration over /3, the following 
relation is obtained: 

Here, 

/31 = ~[ - kz + ~{k; + (Kom/R )2) ] , 

/32 = ~[ + kz + ~(k; + (Kom/R )2) ] . 

(4.26) 

It turns out that the initial condition (4.19b) is satisfied if 

CO(KOm ,/31)/31 - C1;(KOm ,/32)f32 

= 2g(KOm ,kz )hrR 2 [J1 (KOm ) ] 2, (4.27) 

where 

f + '" fR (KomP) + ik,z g(KOm ,kz ) = _ 00 dz 00 dp pJO ~ G(p,z)e . 

(4.28) 

A combination ofEqs. (4.26) and (4.27) results in the spec­
trum 

CO(KOm ,/31) = /311T'R2[)1(Kom)]2(f(Kom,kz) 

X k; + ( K~m r + g(KOm ,kz ) ) . 

(4.29) 

The relation /31 =f3( kz ) must be inverted in order to obtain 
kz = kz (f3). Eq. (4.29) can be written, then, as 

Co (KOm ,f3) = /31T'R 2 [J: (KOm)] 2( f{KOm ,kz (f3») 

X k ; (/3) + (K~m r + g{KOm ,kz (f3))) 

and the solution to the original problem can be expressed as 

X ~ (f{Kom ,kz (/3) ) k ; (f3) + ( K~m )
2 

+ g{KOm ,kz (f3) )) , (4.30) 
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in terms of a superpoSItIon of the elementary blocks 
e - ia;eiP'1. Obviously, the shape of the field u (p,;, 1]) depends 
on the choice of F(p,z) and G(p,z). If, for example, F(p,z) is 
chosen in the separable form 

F(p,z) = FI (p)Fz(z) , 

and 

G(p,z) = 0, 

Eq. (4.30) can be rewritten as 

"" 1 
u(p,;,1]) =Re L RZ[J ( )]2 

m= I 1T I KOm 

X i"" d/3 PZ(kp (f3») 

X [k;(/3) + (K~m )T /Z 

e- i
(Kf,m

I4
{3R'); 

X ei{31/Jo( Ko;P ) i R 

dp' p'F\ (pi )Jo( K~m pi), 

(4.31) 

where Pz (k z ) is the Fourier transform of Fz (z ). To be more 
specific, let 

FJ(p) = (l/41T)JO(KOmpIR) , 

Fz(z) = Ko[ (KomIR)/t?+? ] , 

where Ko is the zeroth-order modified Bessel function of the 
second kind. The initial conditions in this case have the form 

u(r,O) = 4~ Jo( K7/ )Ko[ K~m /t?+? ], (4.32a) 

u,(r,O) =0. (4.32b) 

The Fourier transform of the function Fz (z), required in Eq. 
( 4. 31 ), is given in this case by 

The expression for the root/3., viz., 

(2/3- kz)z = k; + Kom lR z, 

can be used to invert kz = kz ((3). This leads to the relations 

k z = +KomI4f3Rz-f3, (4.34) 

(4.35) 

Equations (4.33) and (4.35) can be used in conjunction 
with (4.31) to obtain 

"" Jo(KompIR) i"" d 1T 
u(p,;,1]) =Re L RZ[J ( )]z 'f3-f3 m = I 1T J KOm 0 

X iR 

dp' :~ Jo( K~m p) Jo( K~m p). 

(4.36) 

By integrating over p', Eq. (4.36) simplifies to 

1268 J. Math. Phys., Vol. 3D, No.6, June 1989 

u(p,;,1]) = Re{ ("" d/3 
Jo 81T/3 

X e - (Kf,m/4PR ') (a + i;) e - p(a - i1/) Jo( K;P )} . 

(4.37) 

The remaining integration over /3 can be carried out using 
equation (3.478.4) in Gradshteyn and Ryzhik. 39 The solu­
tion to the initial boundary value problem under considera­
tion then assumes the form 

{
I [Kom u(r,t) = Re -Ko --

41T R 

X ~(a + i;)(a - i1]) ko( KO;P)} . (4.38) 

An interesting variation of the solution given in (4.38) 
can be obtained by simply replacing the single parameter a 
by two parameters a) and az, namely, 

{
I [Kom u(r,t) = Re -Ko --

41T R 

X ~(al + i;)(az - i1]) ]Jo( K;P)}. (4.39) 

Because of the asymmetric dependence on the values of a I 
and az, the pulse given in Eq. (4.39) can be made to travel 
mainly in one direction. On the other hand, the solution 
(4.38) represents a pulse that will split into two halves prop­
agating in opposite directions. Such claims can be verified by 
referring to Eqs. (3.38) and (3.39) which give the positive­
going and the negative-going components of the splash 
pulse. The only difference entails the replacement of the inte­
gration over K by a summation over KOm' The backward and 
forward spectra have the following ratio: 

F(kz,KOm )IF( - k
2
,KOm) = e(a, - a,)k,. 

It is seen that for az = ai' the positive and the negative com­
ponents have the same strength. On the other hand, for az > 1 
anda.<I,F(kz ' Kom»F( -kz' Kom)andthepulsemoves 
predominantly in the positive z direction. Moreover, in con­
tradistinction to the splash pulse (3.19), the solution (4.39) 
is localized by the walls of the waveguide and one does not 
have to worry about its localization in the transverse direc­
tion. 

v. CONCLUDING REMARKS 

A novel bidirectional decomposition of solutions to par­
tial differential equations into backward and forward travel­
ing plane waves was introduced in this paper. This technique 
is distinct from other factorization methods available in the 
literature (cf., e.g., Ref. 41 ). The main difference stems from 
the fact that it involves a product of plane waves propagating 
in opposite directions, while usual factorization techniques 
decompose the solutions into a sum of forward and back­
ward traveling plane waves. The bidirectional decomposi­
tion, which was developed within the framework of a more 
general embedding procedure, allows the construction of 
general solutions by means of a superposition of elementary 
bidirectional blocks. Such a novel superposition differs sig-
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nificantly from the more conventional ones, e.g., the Fourier 
synthesis. In particular, it is characterized by algebraic sin­
gularities that can be much easier to handle than the branch­
cut singularities arising usually in the Fourier synthesis. In 
spite of these differences, there is a one-to-one correspon­
dence between the new synthesis and the Fourier method 
and these two methods complement each other. 

Several mathematical aspects of the new synthesis were 
addressed. It was shown that the elementary blocks entering 
into this superposition are composed of exponential and Bes­
sel functions which form complete sets of orthogonal func­
tions. This led to an inversion formula, from which different 
spectra can be calculated from the knowledge of exact solu­
tions. Necessary conditions for the choice of the spectra 
leading to convergent solutions were discussed. 

The bidirectional decomposition was applied to the 
three-dimensional scalar wave equation, the three-dimen­
sional Klein-Gordon equation, the three-dimensional dissi­
pative wave equation, and the telegraph equation. For all 
these equations, it was demonstrated that new, exact solu­
tions can be easily obtained. It was noted that the new syn­
thesis provides the most natural basis for the construction of 
the unusual Brittingham-like solutions and that it can be 
used as a vehicle to find the Fourier spectral content of these 
solutions in order to gain a better understanding of their 
properties. Finally, it was shown that initial-boundary value 
problems can be solved using the bidirectional decomposi­
tion. A specific example was worked out in connection to an 
infinite waveguide and new solutions [cf. Eqs. (4.38) and 
(4.39)] were derived. These pulse solutions, especially 
(4.39), exhibit unusual decay patterns as they propagate 
down the waveguide. A detailed analysis of their properties 
has been published elsewhere.42 A natural extension of this 
problem is the case of the open waveguide whose aperture is 
illuminated by the pulse given in Eq. (4.39). The solution to 
this problem is incorporated in Ref. 42. 
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It is shown that one loop Feynman integrals containing spurious poles (kn) -\ are completely 
determined by consistency properties, if they are allowed to depend either on one nonlightlike 
or on two lightlike vectors. Although no t: prescription is given to the spurious poles, the 
results are identical either with the principal value or with the LeibbrandtiMandelstam results. 

I. INTRODUCTION 

Since axial-type gaugesf(nA) = 0 have been used for 
the first time, \ the amount of interest in these gauges has 
grown considerably. They are in some way more "physical" 
than covariant gauges, ghosts decouple in homogeneous axi­
al-type gauges, and the light-cone gauge has had some fun­
damental applications in supersymmetry2 and string theo­
ry. 3 The major disadvantages are the loss of manifest 
Lorentz covariance and the occurrence of so-called "spur­
ious poles" (kn) - \ in the propagators. In handling these 
poles in Feynman graph calculations it is vital to distinguish 
between the cases n2 #0 (axial gauge) and n2 = 0 (light­
cone gauge). For the axial gauge the principal value (PV) 
prescription 

( k~ tv = ~ ( kn ~ it: + kn ~ iJ (1) 

has been used successfully in one loop integrals,4 but it is 
unsuitable for n2 = O. For this case a second lightlike vector 
has been introduced in the two equivalent prescriptions 

( 
1 ) kn* 

kn L = knkn* + it: ' (2) 

(k1nt kn + it: sgn kn* 

suggested by Leibbrandt5 and Mandelstam2 (LM). The aim 
of this paper is to show that, by allowing the values ofFeyn­
man integrals to depend either on one vector nil with n2#0 
or on two vectors n,n* with n2 = (n*)2 = 0, certain basic 
consistency properties of integrals (without assuming any 
sort of t:-type prescription for spurious poles) imply unique 
results identical with the PV or LM results. 

II. THEORY 

Our considerations take place in a 2lU-dimensional Min­
kowski space with a + - - ... metric. A Feynman inte­
grand will always consist of a Lorentz-invariant "Feynman­
type" part and of spurious poles. If we restrict ourselves at 
first to a single simple spurious pole and combine all Feyn­
man denominators with the usual Feynman trick, the most 
general one loop integral will be 

J 
k .. ·k 1 

I" ... " (p,L;n,a) = d 2(Uk Il, Il, -. (3) 
r' r, (k2_2pk-L)a kn 

The lU dependence will be suppressed in our notation 
throughout this paper. We make the following natural as­
sumptions on the properties of IIl""Il,: 

(a) correct mass dimension 2eu - 2a + r - 1; 
(b) compatibility with differentiation with respect to p 

andL: 

aIIl,Il, (p,L;n,a) 
---a---- = 2aI

" 
.... Il, I I (p,L;n,a + 1), 

'P1l , I I 

(4) 

aIIl ... Il , (p,L;n,a) 
------= aI" ... " (p,L;n,a + 1); (5) aL r' r, 

(c) homogeneity in n and, if another vector n* is intro­
duced, in n*: 

IIl .... Il,(p,L;)..n,a) = (l/)")IIl"'Il,(p,L;n,a); (6) 

(d) compatibility with nonspurious Feynman integrals: 

J 2"'k kll' .. 'kll,_ I 

n" I" ... " (p,L;n,a) = d ; (7) 
r, r' n (k2_2pk-L)a 

and (e) invariance under shifts of integration variables. 
Because of (b) we can restrict ourselves to 

I(p,L;n,a) = f d2(Uk 1 _1_ 
(k2_2pk-L)a kn 

(8) 

and determine IIl,""', by differentiation with respect to Pw 
For r;;.a one has to assume analytic continuation in a. Thus 
(d) becomes 

nil JI(p,L;n,a) = 2afd2(Uk _-,-_____ _ 
apil (k 2 _ 2pk _ L) a + \ 

(9) 

Assumption (e) implies 

I(p,L;n,a) = Jd 2(Uk 1 1, (10) 
(k 2 _ p2 _ L) a kn + pn 

showing that I(p,L;n,a) depends on Land p only via L + p2 
and those components ofp on which (kn + pn) -\ depends, 
namely, pn for n2 #0 and pn and pn* for n2 = O. 

Let us first examine the axial gauge with n2 #0. Then 
I(p,L;n,a) will depend onp2 + L,pn,n2,a. Because of (c) it 
has to be of the form 

I(p,L;n,a) = (pnln2)G (pn)2/n2,L + p2;a) , (11) 

with a function G that we want to determine. Equation (9) 
yields 

G+2 (pn)2( JG + aG ) 
n2 J(pn)2/n2) a(L + p2) 

= 2a I(L + p2,a + 1), (12) 

with 
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7 =fdZ"'k 1 
(k z _ 2pk _ L)a 

= i1f"( _ 1)a rea - w) (L + pZ)",-a. 
rea) 

(13 ) 

This is an inhomogeneous first-order partial differential 
equation. Since we know that the PV of l(p,L;n,a) fulfills 
conditions (a)-(e), 

Gpart = (n2Ipn)/pv (p,L;n,a) (4) 

is a particular solution to Eq. (12). The remaining homoge­
neous equation is easily solved: 

_ (pn)Z) - 112 ( 2 _ (pn)Z) 
Ghom - 2 / L + p 2' 

n n 
OS) 

we see that 

Gpart = 7 (L + p2;a) (25) 

is a particular solution. It corresponds to the PV prescription 
on the light cone. 7 The solution of the homogeneous equa­
tion is 

Ghom =/(L + p2 - 2pnpn*lnn*). (26) 

Thus (a) implies 

Ghom =..t(a)(L+p2-2pnpn*lnn*)"'-U (27) 

and compatibility with differentiation with respect to L 
yields 

(w-a)..t(a) =a..t(a+ 1) (28) 

where/is a priori an arbitrary function. Condition (a) im- and therefore 

plies ..t(a) =..t'[r(a-w)/r(a)]( -l)u. (29) 

_(pn)2)-1/2 ( 2 (pn)2)",-a-1I2 
Ghom - --2- ..t(a) L + P - --2-

n n 
(6) 

and therefore 

1= Ipv + --,.t(a) L + p2 - p~ . (7) 
1 ( () 2)<u - a - 112 

R n 
To allow compatibility with differentiation with respect to L 
[cf. Eq. (5)], ..t(a) must fulfill 

(w- a - !l..t(a) = a..t(a + 1). (8) 

In Ref. 6 the integral 

liC(p,L;n,a)=fd2'"k 1 (9) 
(k 2 _ p2 _ L) a kn + iE 

was calculated. It allows a calculation of PV integrals: 

Ipv (p,L;n,a) 

= !(lic (p,L;n,a) - liC (p,L; - n,a»). (20) 

Then l(p,L;n,a) as in (7) with any..t that fulfills (8) is 
equal to 

JlI;c (p,L;n,a) - 0 - Jl)/ic (p,L; - n,a) (21) 

with some Jl. Condition (c), however, implies that 
l(p,L;n,a) must be odd in n,.. This is only satisfied for ..t = 0 
(corresponding to Jl = ~), showing that the only permissible 
choice for I is I pv . 

Let us now turn our attention to the light-cone case.We 
have n2 = 0 and allow our integrals to depend on another 
vector n! with (n*)2 = O. Now l(p,L;n,n*,a) will depend 
on L + p2, pn, pn*, nn* and a. Homogeneity in n* implies 
that I dependsonn*onlyviapn*lnn*. Because of (c) Imust 
be of the form 

Olpn)G(pn pn*lnn*,L + p2;a). (22) 

Analogously to Eq. (12) we derive 

aG +2 aG =2a7(L+p2;a+ 1). 
a(pn pn* Inn*) a(L + p2) 

With 

1271 

a 7(L +p2;a) =a 7(L +p2;a + 1), 
a(L +p2) 

J. Math. Phys., Vol. 30, No.6, June 1989 

(23) 

(24) 

We have 

l(p,L;n,n*,a) 

= ( _ l)u1f" rea - w) _1_ 
rea) pn 

X[(L+p2)'"-U_ T(L+P2-2p:~;*r-U], 
(30) 

with T = - 1T -'"..t '. For T = 0 we get the PV result and 

for T = 1 the LM result (see, e.g., Ref. 8). Thus 

(31) 

All these values are internally consistent for noninteger w. It 
is well known, however, that on the light cone the PV (but 
not the LM) results develop double poles in (2 - w) and 
also poles proportional to In p2 in the context of dimensional 
regularization, which cannot be treated within the usual re­
normalization schemes. Therefore in physical applications 
we must not allow our integrals to have PV -like parts and set 

T = 1. In this manner we have arrived again at a unique 
result for l(p,L;n,n*,a). 

Let us now examine integrals with one multiple spurious 
pole both on and off the light cone. It seems natural to define 

( - 1).8- 1 a.8- 1 _ 
----/(L +p2pn ... ) 

rep) a(pn).8- 1 ", 
(32) 

wherej(L + p2,pn, ... ) = I(L,p;n,a) or I(L,p;n,n*,a) as de­
fined previously. Only in this definition multiple spurious 
poles can be regarded as limits of products of different single 
spurious poles (for a more detailed presentation of this argu­
ment see Ref. 9). We have full compatibility with a general­
ization of (d) to P> 1 and, again, we get the PV or LM 
results. 

The simplest integral with different spurious poles is 

Harald Skarke 1271 



                                                                                                                                    

J(p,q,L;n,a) 

= f d 2wk ---'--­
(k2-2pk-L)a kn kn+qn 

There are two consistency relations analogous to (d): 

Il aJ(p,q,L;n,a) n 
aJf' 

= 2a f d 2wk 1 1 , 
(k 2 _ 2pk - L)a + I kn + qn 

(33) 

2 n aJ(p,q,L;n,a) + nil aJ(p,q,L;n,a) (34) 
q aL aJf' 

= 2a f d 2'"k 1 _1_. 
(k 2 _ 2pk _ L) a + I kn 

Subtracting these two equations and keeping in mind that 

aJ(p,q,L;n,a) _ J( L· + 1) (35) _..:o...:...!.:--'--'--'- _ a p,q, ,n,a , 
aL 

we get 

qnJ(p,q,L;n,a + 1) 

= fd 2Wk 1 
(k2_2pk-L)a+1 kn+qn 

_ f d2'"k 1 (36) 
(k 2 _ 2pk - L)a+ I kn 

This implies 

J(p,q,L;n,a) 

_ 1 (fd 2'"k 1 1 
qn (k 2 - 2pk - L) a kn + qn 

f d2wk 1 1 ) 
(k2_2pk-L)a kn 

+ ~(qn)f(p,q.L;n.a). (37) 

The ~(qn) term arises because division ofEq. (36) by qn is 
an allowed operation only for qn #0. Thus, in the context of 
Feynman integrals, 

1 1 __ 1 __ 1_+_1_ 1 =~(qn)~(kn)g, 
kn kn + qn qn kn qn kn + qn 

(38) 

where g has to be dimensionless and homogeneous in nand, 
if necessary, in n*. Here ~(kn) arises because of the symme­
try of the 1hs ofEq. (38) between k and q. The ~-function 
terms in (37) and (38) only become meaningful in the con­
text of integrals over more than one loop. Since the value of 
such an integral should not depend on the order of integra­
tions and integrals with a single spurious pole are interpreted 
as PV or LM integrals, g has to take the same value as in the 
context of these prescriptions, namely, g = rr for n2 #0 and 
g = 0 for n2 = o. 
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III. CONCLUSION 

Although we have used a higher loop argument here, we 
cannot give a complete analysis to all orders. The PV pre­
scription is well known to exhibit difficulties in higher loop 
integrals because [PV(kn)-IW#PV(kn)-2). It seems 
that our approach, namely, not giving any prescription at the 
level of propagators and interpreting integrals only in the 
context of consistency requirements, might be safer. One 
should recall here that we always interpret (kn) - f3 as in Eq. 
(32), no matter which propagators contribute to an expres­
sion. 

It has been shown that mere consistency properties of 
one loop Feynman integrals with spurious poles determine 
the values of these integrals completely. If we allow our inte­
grals to depend on only one nonlightlike vector nil' they tum 
out to be equal to the PV results, whereas those depending on 
two lightlike vectors have to be equal to the LM integrals 
only if we also demand the absence of nonsimple poles in 
dimensionally regularized integrals. Thus both prescriptions 
are unique in the contexts of their applications. If we allow 
our integrals, however, to depend on two unrestricted (not 
necessarily lightlike) vectors, this uniqueness is lost. Gener­
alizations of the LM prescription 10 fulfill the requirements 
( a) - ( e ). but, using the methods of this paper, one finds that 
adding any function to these results that depends on p and L 
only via nn*pn - n2pn* and n2 (L + p2) - (np)2 and has 
the right dimensionality and homogeneity properties yields 
values that are also internally consistent. 
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Using the IWOP (integration within ordered product) technique, a new unitary operator is 
found that is useful in diagonizing the Hamiltonian of a pair of coupled harmonic oscillators. 
The coordinate representation of the unitary operator is presented, and is well applied to 
obtain the wave function of energy eigenstate of the coupled oscillator. 

I. INTRODUCTION 

Of a system of two interacting spinless particles with 
coordinates Q\ and Q2' the typical one is the coupled har­
monic oscillator whose Hamiltonian is given by 

1 22m 2 Q2 Q2 K Q Q 2 H=-(P I +P2) +-w ( 1+ 2) +-( \ - 2) 
2m 2 2 

=w(ata+btb+ 1) +~(QI-Q2)2, 
2 

(1) 

where a[at ], b[b t ] are two-mode annihilation [creation] 
operators of the uncoupled harmonic oscillator, and they are 
related to Q\ [Q2] and PI [P2] by 

Q, = ~ Ii (a + at), PI = ~ mwli a - at 
2mw 2 i' 

~bt ~Wli b-b
t 

Q2= --(b + ), P2= -- --.-. 
2mw 2 I 

(2) 

(3) 

The coupled oscillator problem has some intrinsic interest, 
because in the strong interaction limit, it is a crude model of 
the states of a tightly bound diatomic molecule in a crystal. I 
It is well known that by introducing the center-of-mass and 
relative coordinates respectively, as 

X=!(QI+Q2)' X=QI-Q2' 

and their conjugate momentum, 

P=PI +P2, [X,P] =ili, 

p = !(P, - P2 ), [x,p] = iii, 

( 1) can be put into 

H=Hem + H re, , 

H 
p2 M 2X 2 

em =2M+~ , 
2 

H = L + !!:.:jij2x2 

rei 2p 2 ' 

M=2m; 

m 
p=-, 

2 

where Cl) is the new frequency, defined by 

Cl) = (w2 + Kip) '/2. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Let the respective harmonic oscillator eigenstates of H rel and 
Hem be In,)' and In2)', 

In l )'ln2)'= In,n2)' = (A to'B to'!~n\!n2!) loo}' , (10) 

where At, B t are defined by 

aJ Present address. 

Bt= ~(~M:X-i~:WIi)' [B,Bt]=l, (11) 

At = ~ (.ft-x - i ~:Cl)Ii)' [A,A t] = 1 , (12) 

and 100)' is the ground state in the new Fock space spanned 
by In ln2)'. By virtue ofEqs. (2)-(6), A, Bbecome 

B = (1/~)(a + b), 

A = (1/2~2wCl) [(Cl) + w) (a - b) 

+ (Cl) - w)(at - b t)] . 

(13) 

Obviously, the Hamiltonian of the coupled oscillator is dia­
gonized and its spectrum is given by 

H In ln2)' = [fi{J(n, + p + w(n 2 + P] In ln2)'. (14) 

The wave function of In, n2 )', though a very simple function 
of the eigenvalues of X and x, is a rather complicated func­
tion of the eigenvalues ql' q2 of the particles coordinates Q, 
and Q2.1 In this paper, we find that the operator U exp[i( 11'1 
2)Jy ]' whereJy = 1/2i (at b - b t a) and Uis a new unitary 
operator whose coordinate representation is given in Sec. II, 
can play the role of transforming two isotropic dimensional 
harmonic oscillator's Fock basis, 

(15) 

into the Fock basis In\n2)'. In terms of the transformation, 
the wave function (Qlq2In\n2)' can be easily obtained. The 
paper is arranged as follows. 

In Sec. II, we begin by identifying the coordinate repre­
sentation of U. Then the calculation is carried out, employ­
ing the newly developed IWOP technique2

-6 to obtain a nor­
mally ordered form of U. This form is further simplified by 
using an operator identity that is derived in Sec. III, follow­
ing the way given by Ref. 7. The transforming properties of 
a, b under the U transformation are thus obtained, which 
manifestly show that U exp[i( 11'12)Jy ] isjust the generating 
operator changing In,n 2 ) into In l n2 )'. In Sec. IV, with the 
help of the coordinate representation of U, we give the ex­
plicit form of the wave function (QIQ2In,n2)'. 

II. COORDINATE REPRESENTATION OF U 

The new unitary operator, which is useful in transform­
ing (15) into (10), is introduced here by identifying the 
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following coordinate representation: 

( a»1I
4 f"" f"" U = W _ 00 dql _ 00 dq2 

X I ql + q2 + ql - q2 (ji q2 + ql 
2 2 \j{ij' 2 

+ q2 ~ ql~)(qlq21. (16) 

where Iql,q2) == Iql) /q2) is the two-mode coordinate eigen­
state. In the Fock space of two-dimensional harmonic oscil­
lator. they are given by 

Iql) = C:YI4 exp{ - ;;cft + ~2~a> q1at _ a;2 }IO)I. 
(17) 

Iq2) =(:)114 exp{ _ ;;rIz + ~2~a> qJJ t _ b;2} 10)2, 

(18) 

where 100) == 10) 110)2 is the ground state, satisfying 

alOO) = b 100) = 0 , 

100) (001 = :e - ata - b tb: 

here: : stands for normal product. 

(19) 

(20) 

The completeness relation of Iq\) can be reformed as an 
integration within normal product, 

By virtue of ( 17), (18), (20), and the IWOP technique, we 
can perform the integration in (16) similar in spirit to (21), 
and obtain 

u = 1T-
1
(;)1I4 f: 00 dql f: 00 dQ2:exp{ - ! [(3 + ;)(qi + q~) + 2qlq2( 1 - ;)] + ~ [(1 + ~)at 

+ (1- ~)bt] + ~ [(1-~at + (1 + ~)bt] +~(qla +Q2b) 

_ ! (at2 + b t2 + a2 + b 2) _ ata _ b tb }: 

= ( 2~)1I2 exp { a> - {ij (at _ b t)2}:exp{ (.JW - ~)2 (atb + b ta _ ata _ b tb)}:exp{ {ij - a> (a _ b)2} . 
a> + a> 4(a> + a» 2(a> + a» 4(a> + a» 

Here q I' q2 are dimensionless integration variables. Equation 
(22) is a normally ordered form and is not seen in the earlier 
literature. Obviously, when K = 0, (ij = a>, (22) reduces to 1, 
as expected. In order to prove that U is unitary, we rewrite 
(16) as 

where 

(24) 

then we have 

uut=~ f:oo dq1f:00 dq2Ig(:J)(g(::) I 
= 1 = utu, (25) 

since the Jacobian for the integration variables' transforma­
tion is det g = JO)I,ffJ. To see how a [b] changes under the 
transformation U, we need to further simplify the right-hand 
side of (22). 
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(22) 

III. TRANSFORMATION PROPERTY OF s, b UNDER THE 
U TRANSFORMATION 

In order to remove the: : which appears on the right­
hand side of (22), we need a new operator identity, e.g., 

:exp[O'(atb + b ta - ata - b tb)]: 

= exp{[ - ! In(1 - 20') ] (atb + b ta 

(26) 

where 0' is a parameter. To prove (26), we follow Ref. 7 by 
introducing 

A = (a - b)/~, At = (at - bt)/~, (27) 

with [A, At J = 1. Consider canonical coherent state gener­
ated by A, i.e .• 

All') =/1/), <Ill') = 1. (28) 

Then, obviously, 

(/1~AtAIf') = e- (1I2)(lfl'+ If'I')ef°re"' 

= (/1:e(e"-I)At A:1f') . (29) 

By the overcompleteness relation of I I) we obtain 
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(30) 

Setting A = In (1 - 20") in (30), we get (26). Note that (26) = (lIv2)(a + b) = B , (41) 
can also be proved by using the IWOP technique. In terms of 
(26), Ubecomes U(1/v2)(a - b)U- 1 = Uei(1T/2)Jyae -i(1TIZ)Jyu- 1 

U = (2~)l/Z exp{ w - W (at _ b t)z} 
w+w 4(w+w) 

xexp(~(at - b t)(a _ b)ln 2~WW) 
2 w+w 

Xexp (a - b)z . { 
w-w } 

4(w + w) 

Using 

e - iJy() at eiJy() = at cos ( (;I /2) + b t sin ( (;I /2) , 

e - iJY()b teiJy() = b t cos«(;I /2) - at sin«(;I /2) , 

we have 

It then follows from (32), (33), and (34) that 

SatS- 1 = Hat(e- u + 1) + b t (1- e- ZA », 
SaS- 1 = Ha(1 + eZA ) + b(1- e2A

)] , 

and 

Sb t S - 1 = H b t (e - U + 1) + at (1 - e - ZA» , 

SbS -I = Hb(1 + eU
) + a(1 _ e2A

)] • 

By virtue of (35) and (36), as well as the formulas 
'( t btl' '( t btl' t t eA a - ae - A a - = a + U (b - a ) , 

eA(at - bt)'be-A(at - btl' = b + U(at _ b t) , 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

we know that under the U transformation a, b turns to 

UaU- 1 = (1I~) [(at - b t)(w - w) + (.J7j + jW)2a 

(39) 

UbU- 1 = (1/~)[(bt -at)(w-w) + (.J7j+jW)2b 

- (.J7j _jW)za] . (40) 

It then follows from (39), (40), and (13) that 

in which 
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= (1I2~2ww) [(w + w) (a - b) 

+(w-w)(at-bt)]=A. (42) 

Further, by virtue of (31 ), we have 

Uei(1TIZ1JYI00) = (2~)l/Z 
w+w 

xexp[ w-w (at_bt)z]IOO). 
4(w+w) 

(43) 

One can easily obtain 

aUei(1T/2)JYIOO) = w - ~ (at _ b t) Uei(1TIZ)JYIOO) , 
2(w + w) 

(44) 

bUei(1TIZ1JYI00) = w - w (b t _ at) Uei(1T/2)JYIOO) . 
2(w + w) 

(45) 

It then follows that 

(1Iv2) (a + b) Uei(1T/2)JYIOO) = 0 , (46) 

(1I2~2ww) [(w + w(a - b) 

+ (w - w) (at - b t)] Uei(1TIZ) JY IOO) = O. (47) 

By comparing (46) and (47) with (41) and (42), we can 
identify 100)' as 

100)' = Uei(1TIZ1JYI00) . 

Thus we obtain the result 

Uei(1TIZ1JYln1nZ ) = In1nZ )' • 

Note that (36) has squeeze operatorlike form.4
•
8 

IV. CALCULATING WAVE FUNCTION (q,qzln,nz)' 

(48) 

(49) 

In this section we show that the coordinate representa­
tion of U provides us with a convenient way to derive the 
wave function (qlqzln1nz)'. Using (49) and (16), we obtain 

Hong-yi Fan 1275 



                                                                                                                                    

e'(1T12)JY ln ln2) = - 00 · ( 1 )nl+n, (at _bt)n'(at+bt)n, I ) 
Ji ~nlln21 

= (_1_)nl + n, i I (nl)(n2)( _ )nl-I [U + k)l(n l + nz -1- k)l] 1/211 + k,n l + n2 -1- k) . 
Ji 1=0 k=O 1 k ~nlln21 

(51) 

Substituting (51) into (50), and using 

((~+ 1)~1 - (~_1)~2 ,(~+ 1)~ -(~-1)~ I/+k,n l +n2 -I-k) 

= (,:Y/2[U+ k)l(n l +n2-I-k)12n,+n,]-1/2exp[ - : [(qi +q~)(w+w) -2qlqz(w-W)]] 

XHI+k{-J*[ (/OJ +~)~ - (/OJ _~)~2]}Hnl+n'-I-k{-J*[ (/OJ +~)~2 - (/OJ _~)~I]). (52) 

Where HI + k is the Hermite polynomial, we get 

(qlqzlnlnz)' = (~r + n,( ~~~ y/4 Ito kto (~I)(i)( - )nl -1(n lln2!) -1/2 

xexp{ - : [(qi + q~)(w + w) - 2qlqz(w - w)] }HI+k {-J*[ (/OJ + ~)~I - (/OJ - ~)~]) 

XHnl+n'-I-k{-J*[(/OJ+~)~ - (/OJ-~)~]). (53) 

Finally, it is worthwhile to point out that although the sepa­
rate form (7) of the coupled oscillator has been known for a 
long time, the problem of what is the unitary transformation 
changing Inlnz) into Inlnz)' had not been paid enough atten­
tion before this work solved the problem. 
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Long-time behavior of two-point functions of a quantum harmonic oscillator 
interacting with bosons 
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A class of exactly soluble models of a one-dimensional quantum harmonic oscillator 
interacting with bosons moving in the d-dimensional space Rd is considered and the long-time 
behavior of the two-point function of the oscillator at zero temperature and at finite 
temperatures is analyzed. It is shown that the two-point functions decay with a power-law 
respectively as the time tends to infinity and that, in the case where the boson is massless, the 
two-point function at zero temperature decays faster than'those at finite temperatures, while, 
in the case where the boson is massive, they decay with the same order. Further, the 
dependence of the decay order on d as well as on the infrared behavior of the one-boson energy 
and the momentum cutoff function in the interaction Hamiltonian is clarified in each case. 

I. INTRODUCTION AND THE MAIN RESULTS 

In a previous paper, I we considered a general class of 
models of a one-dimensional quantum harmonic oscillator 
coupled to infinitely many bosons in the Hilbert space 

Y = L 2(R) ®Ys(~)' (1.1) 

where Y s (~) is the symmetric (Boson) Fock space over a 
complex Hilbert space ~ [e.g., Ref. 2 (§II.4) ]. The unper­
turbed (free) Hamiltonian of each model in the class has the 
common form 

( 1.2) 

Here a is the annihilation operator of the oscillator acting in 
L 2 (R), dr (h) is the second quantization of a non-negative 
self-adjoint operator h (the one-particle free Hamiltonian of 
the boson) [e.g., Ref. 3 (§X.7)], I denotes identity, and 
Wo > 0 is a constant parameter denoting the circular frequen­
cy of the oscillator. The interaction part (perturbation) HI 
is given by a general form quadratic in the annihilation and 
creation operators for the bosons and the oscillator. (For the 
detailed form of HI' see Ref. 1. But, in the present paper, we 
do not need it.) It was proved in Ref. 1 that, under some 
conditions, the total Hamiltonian 

(1.3 ) 

is unitarily equivalent to dr(h) + Eo [acting in Y s (~)] 
with a real constant Eo and hence, in particular, all the possi­
ble embedded eigenvalues of Ho, except for the zero eigenval­
ue, disappear under the perturbation. Further, in the case 
~ = L 2(Rd

), taking Ho as 

(1.4) 

with a rotation invariant function w on Rd and a parameter 
r> 0 and changing the parameters in HI> we showed that the 
class gives a unified description of standard models of a one­
dimensional quantum harmonic oscillator coupled to bo­
sons, containing the following ones: 

(M 1) (The RW A oscillator; r = 1) (e.g., Refs. 4-7) 

H = woa*a ®I + I®dr(w) + a® b(p)* + a* ®b(p). 

(M2) (The Schwabl-Thirring model; r = 1/2) (e.g., 
Refs. 6, 8-13) 

H = woa*a®I + I® dr(WI/2) + q®ifl(p). 

(M3) (r = 1/2) 

H = !p2 ®I + I®dr(w I/2 ) 

+ (wU2)(q ® I - I ® ifl(p»)2 - !wo' 

Here b ( f),JEL 2 (Rd 
), is the (smeared) boson annihilation 

operator acting in Ys(L 2(Rd »), qER denotes the position' of 
the oscillator,p = - id /dq, 

ifl(f) = (1/~){b(W-l/y)* + b(w-I/Y)}, 

and p is a cutoff function. 
The model (M3) may be regarded as a simplified ver­

sion of a three-dimensional quantum harmonic oscillator 
minimally coupled to a quantized radiation field with an 
ultraviolet cutoff (e.g., Ref. 14 and references therein). 

In the present paper, taking ~ = L 2(Rd
) with Ho giv­

en by (1.4), we investigate the long-time behavior of the 
two-point function at the zero temperature defined by 

( 1.5) 

and that at a finite temperature /3 - I > 0 given symbolically 
by 

( 1.6) 

where q(t) is the time evolution of q by the total Hamilto­
nian H given by (1.3) 

( 1.7) 

n is the ground state of H, and Tr denotes the trace [strictly 
speaking, the rhs of (1.6) is defined as an infinite volume 
limit of a finite volume approximation of the quantum sys­
tem under consideration]. As we shall see below, W(tI,t2 ) 

[resp. Wp (t1,t2)] has a characteristic form common to all 
the models in the class. We are mainly interested in the fol­
lowing aspects: 

( I) The dependence of the order of the time decay on the 
dimension d, r, and on the infrared property of the functions 
of w andp [i.e., the behavior of w(k) andp(k) as k .... O]. 

(II) The difference of the time decay between the case of 
finite temperatures (0 </3 < (0) and that of the zero tem­
perature ({3 = (0). 

(III) The difference of the time decay between the 
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massless case [infk w(k) = 0] and the massive case 
[infk w(k) > 0]. 

We remark that we can not expect an exponential decay 
for the two-point functions, because we assume that H is 
bounded from below to define them; this follows from a gen­
eral theorem (Ref. 15, §7.3, Theorem 3.3). See also Appen­
dix C in the present paper. 

The problem of the long-time behavior of two-point 
functions (or correlation functions) of a quantum harmonic 
oscillator coupled to a heat bath (an infinite system of bo­
sons) has recently been discussed in the statistical physics 
literature (e.g., Refs. 6, 12, 16, and 17; cf. also Ref. 10 for a 
field theoretical discussion) and some partial results have 
been obtained with some concrete models [mainly those re­
lated to the models (M 1 ) and (M2) ]. In these works, how­
ever, the authors make an ad hoc assumption on the spectral 
density of the correlation function or on the memory kernel 
in the Langevin equation. This procedure formally corre­
sponds to taking a special form for the cutoff function p in 
our Hamiltonian formalism. In the present paper, we do not 
make such an ad hoc assumption and consider the models as 
generally as possible. Accordingly, our results include as 
special cases the partial results on the long-time behavior 
mentioned above and generalize on them. At the end of this 
section, after stating our results, we shall give a more de­
tailed comparison of our results with those obtained in the 
other works. 

We now proceed to describe the two-point functions in 
our models. 

Let w\ be a non-negative, continuously differentiable, 
and monotone increasing function on (0,00) such that 
w\ (x) ---> 00 as X---> 00 with the derivative w; (x) > 0 for all 
x>O. We set 

m=infw\(x);;.O. (1.8) 
x>o 

The rotation invariant function w on Rd is defined by 

w(k)=w\(lkl), kERd. (1.9) 

The cutoff function p is a real-valued continuous function in 
L 2(Rd

) such that 

(p(k)2 dk <00, (1.10) 
JR" w(k) 

and 

(1.11) 

Remark: If m > 0 (the massive case), then (1.10) is au­
tomatically satisfied because of pEL 2 (Rd

) [more generally, 
we havew ~ApEL 2(Rd

) for all A >0), but, in the case m = ° 
(the massless case), this is not true. 

For} = 0,1, we introduce the function <I>;f> (z) by 

<I>;f>(z) = ( w(k)jp(k)2 dk, (1.12) 
JRd z -w(k) 

which is analytic in the cut plane 

C m = C" [m,oo). (1.13) 

Let 
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D (jl (z) = aff> - aVlz + O\J J p(k)2 dk + <I>~l (z), 

(1.14 ) 

whereayl, iJ = 0,1, are real constants with aVl > 0, } = 0,1, 
and o\J is the Kronecker delta function. We assume that 

d ~l=afP - aVlm + o\J J p(k)2 dk 

+ <I>~l(m) >0. 

Then it is easy to see that 

D (jl (z) =10, uCm • 

(1.15 ) 

(1.16 ) 

Remark: By renormalizing the parameter afp as 

aff> = aff> + aVlm - o\J J p(k)2 dk - <I>~)(m), 

aff> > 0, 

d ~l can be made positive. 
For technical reasons, we assume the following: 

(AI) (a) sup 1<I>~j)(x-iE)I<oo, 
€>o 

XE[m,oo ) 

(b) inf ID (j)(x - iE) I> O. 
€>o 

XE[m,oo ) 

For sufficient conditions for (AI) to hold, see Appendices A 
and B. 

It follows from (AI) (a) that, for all sufficiently large 
x>O, 

ID (j) (x - iE) I ;;.cx ( 1.17) 

with a constant c> ° independent of E. 

One can show using the theory of the Hilbert transform 
(e.g., Ref. 18) that the limits 

D <f- (x) :=lim D (j)(x ± iE), } = 0,1, 
~ €lO 

(1.18) 

exist for a.e. XE (m,oo), which, by assumption (AI)(b), 
cannot be zero. 

We are now ready to give an explicit form of W(t\,/2 ) 

[resp. Wf3 (1\,/2 )] (up to a constant multiple) which follows 
from Ref. 1: 

W(t\,/2 ) = W(t\ - 12 ), (1.19) 

Wf3 (t\,/2) = Wf3 (t\ - 12), 

with 
( 1.20) 

i p(k)2e~ i/w(k)' 

W(t) = dk, 
Rd w(k) 2ra ID <f- (w(k»)1 2 

)= 0,1, ( 1.21) 
and 

i p(k)2(e(f3~ it)w(k)' + eitw(k)') 
Wf3(t) = dk, 

Rd w(k) 2ra ID<f-(w(k)W(ef3W (k)' -1) 

} = 0, 1. ( 1.22) 

Here r> ° is the parameter in Ho given by ( 1.4) and aER is a 
parameter appearing in b(w ~ rap) and b(w ~ rap) * in the 
interaction HI' and} depends on the form of HI; for example, 
in the model (M1) [resp. (M2), (M3)], we have (r, a, 
}) = (1, 0, 0) [resp. (Mm, (!,P)]. Of course, the con-
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stants aff> and ap) also change according to models: In the 
model (M1) [resp. (M2), (M3)], we have a6°) = W o and 
ajO)=l [resp.a60)=w~ajO), a61)=w~aP)]. In deriving 
(1.21) [resp. (1.22)] with the case m = 0, an additional 
assumption that p2/(w2ra ID <f (w) 12) [resp. 
p2/W2ra + liD <f (W) 12] is integrable near the origin is made. 
Note that, for all tER, Wp (t) -+ Wet) as {3-+ 00 (the zero­
temperature limit). 

To make the present paper self-contained, we take for­
mulas (1.19)-( 1.22) as the starting point. Therefore the 
reader is not required to have any detailed knowledge in Ref. 
1. 

We shall denote by 7J(x) the inverse function of WI (x), 

w I(7J(x») = x (1.23) 

for x> m. By the inverse function theorem, 7J(x) is differen­
tiable and monotone increasing in (m,oo) with 

lim7J(x) =0, 7J'(x) = [w;(7J(X»)]-I, 
xlm 

xE(m,oo). (1.24) 

For a measurable function/on Rd
, we define the func­

tion U1 on [0,00) by 

[f](x) = ld_1 dS«()j(x() , XE[O,oo), (1.25) 

where S d - I is the d - 1 sphere and dS is the surface integral 
measure on S d - I. Let 

I(j)(x) = 7J'(X)7J(X)d-Ix j[p2](7J(X»), xE(m,oo). 
( 1.26) 

Since p is continuous by assumption, it follows that I (j) (x) is 
continuous in xE(m,oo). 

As another technical assumption, we take the following: 
(All) There exists a constant ()E(0,1T/2) such that the 

function I(j)(x) has an analytic continuation I(j)(z) onto 
the domain 

Om,l1 = {zEqRez> m, - ()<argz<O} 

with the following properties: 

(a) lim I (j) (x - iE) = I(x), xE(m,oo). 
EIO 

(b) II (j) (z) I <const Izl - qj 

( 1.27) 

for all sufficiently large Izl (ZEOm,l1) with a constant qj ;;;.0. 

I (j) 
(c) lim (m +z) =A~) 

z-O z!'}m) 
zeDO•6 

with constants A ~)"I= 0 and Pj (m) ;;;.0. 
(d) For all sufficiently small Eo>O, 

inf ID (j) (x - iE) - 2i1TI (j) (x - iE) I > O. 
O<E<EH 

xe(m,oo ) 

Remark: As is seen from the definition of!(j) (x)'Pj (m) 
is determined by the dimension d and the infrared property 
of WI' wi, and p. See Sec. IV for an example. 

In order to investigate the decay property of Wet) and 
Wp (t) in a unified way, we introduce the following more 
general function: 
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i / (w(k) )p(k)2e - it.,(k)' 
W(tJ) = dk. 

Rd w(k) 2raiD <f (w(k) W (1.28 ) 

Here/is any meromorphic function in Om,l1 with the follow­
ing properties: 

(fI) The number of poles of/(z) is finite. 
(fll) The limit 

lim/ex - iE) =./(x) 
EIO 

exists for a.e. XE (m, 00 ). 

(fIll) sup{lf(z)llzEOm •I1 U(m,oo),lzl;;;.ro}<oo 
with a constant ro> O. 

(flV) lim zam(/)/(m + z) =/m 
z-O 

zeDO,FJ 

with constants am (/)ER and/m "1=0. 

that 

Let 

We now state the main results. We mean by 

g(t) - h(t) 
1- 00 

lim g(t) = 1. 
1-00 h(t) 

B(j) = (D(j)(m) - 2i1TO A (j»DC)(m). m O,p/m) m 

Theorem 1.1: Suppose that 2ra + j + qj + 1 > O. 
(a) Let m = 0 and suppose that 

p/O) - a o(/) - 2ra - j + 1 
~ >Q 

r 

Then 

W(t,j) 
1- 00 rB ff> 

where r(z) is the gamma function. 
(b) Letm>Oand 

Vj =Pj(m) -am(/) + 1>0. 

Then 

( 1.29) 

( 1.30) 

(1.31) 

( 1.32) 

Remark: Under the assumption of Theorem 1.1 in each 
case m = 0 or m > 0, the integral of the rhs of ( 1.28) is abso­
lutely convergent. 

As corollaries of Theorem 1.1, we can derive the asymp­
totic behavior of W(t) and Wp (t) as t -+ 00 . 

Theorem 1.2 (the massless case): Let m = 0 and 
2ra + j + qj + 1 > O. 

(a) Suppose that 

A
j
=.Pj(0)-2ra- j +l >0. (1.34) 

r 
Then 

A o(j)e - ;'TAj2r (l{.) 
Wet) J t -Aj 

1-00 rB fJ> 
( 1.35) 

(b) Suppose that Aj > 1. Then 
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Proof: (a) We have 

W(t) = W(tJ=:I). 

On the other hand, the functionl (z) =: I obviously possesses 
properties (fI) and (fII) with a o(/) = 0 and 10 = 1. 
Therefore, in this case, we have,uj = Aj • Thus (1.31) yields 
(1.35). 

(b) Let 

1 (z) = ePz'/(ePz' - 1) 

and 

g(z) = 11 (eP", - 1). 

Then we have 

Wf3(t) = W(tJ) + W(t,g). 

It is easy to see that each of 1 and g satisfies (f I) and (f II) 
with a o( I) = ao(g) = r and/o = go = 11/3. Hence we have 
,uj = Aj - 1. Thus we get (1.36) from (1.31). 0 

Theorem 1.3 (the massive case): Let m > 0 and 
2ra + j + qj + 1 > O. Then 

A (j) e - injp}m) + 1)/2r (p. ( ) 1) 
(a) Wet) ~ m J m + 

1_", rP}m) + I m2ra+ j + (r-I)(p/m) + I)B (j) 
m 

Xe- ilm't -p}m) -I. 

X _e ____________ __ 
{ 

(13- il)m' - i17jp}m) + 1)/2 

Bfj,) 

ilm' + i17jp/m) + 1)/2 } +e __ t-p}m)-I. 

Bfj,) 

( 1.37) 

(1.38 ) 

Proof: Similar to the proof of theorem 1.2. 0 
Theorems 1.2 and 1.3 show that the two-point functions 

decay with a power-law respectively as t - 00. In both cases 
m = 0 and m > 0, the order ofthe decay increases as Pj (m) 
does. On the other hand, the dependence ofthe decay order 
on the dimension d and the infrared behavior of wand p 
comesonlyfrompj(m) [see (1.26) and (AII)(c)]. In par­
ticular, it follows from (1.26) thatp.(m) is monotone in­
creasing in d. Therefore the higher d becomes, the faster the 
two-point functions decay. 

In the massless case, Theorem 1.2 shows that W(t) de­
cays faster than Wf3 (t). On the other hand, in the massive 
case, the order of the decay of W( t) coincides with that of 
Wf3 (t). We note also that, in the massive case, the oscillating 
factors exp( ± itmr) appear in the asymptotic behavior of 
the two-point functions. 

Remark: We have assumed d fj,) > 0 [( 1.15)] to obtain 
Theorems 1.1-1.3. In fact, in the case d fj,) < O,D (j)(z) has a 
simple unique zero VoE ( - 00, m) and the oscillating terms 
proportional to exp( ± ivot) appear in the two-point func­
tions. This corresponds to the nondisappearence of embed-

1280 J. Math. Phys., Vol. 30, No.6, June 1989 

ded eigenvalues of Ho under the perturbation (in other 
words, the oscillator mode persists under the perturbation) 
(cf. Ref. 7). 

We now try to compare in some detail our results with 
those on the long-time behavior obtained in the other 
works.6 •12,16,17 

In Ref. 16, a phenomenological model based on an aver­
aged Langevin equation rather than on a Hamiltonian was 
presented; the correlation function at the inverse tempera­
ture /3 is given as 

(q(t)q(O» = f'" dw X" (w) lie - i"", (1.39) 
_"" 1T 1-e-fJIM> 

where X" (w) is the imaginary part of the Fourier transform 
of the response function, 

X" (w) = ~ . yw 
M (w2 _ W~)2 + rw2 

( 1.40) 

with positive constants y (the damping constant) and M 
(the mass of the oscillator) and fl is the Planck constant 
divided by 21T. They showed that, at the zero temperature 
/3 - 00 , the real part S( t) (the symmetrized correlation func­
tion) decays as 

fly 1 
Set) ~ ----. (1.41) 

1- "" 1TMw~ t 2 

We can show that this result is a special case of our results: in 
fact, at the zero temperature (/3- 00), one has from (1.39) 

(q(t)q(O» = r"" dw X" (w)1ie - i"". 
Jo 1T 

( 1.42) 

On the other hand, the function W( t) given by (1.21) is 
written as 

W(t) = L"" w(x)r ilx' dx (1.43 ) 

with 

(1.44 ) 

Therefore, by considering the case with m = 0 and r = 1 and 
by setting formally 

w(x) = (fl/1T)X"(X), 

we have at the zero temperature 

Wet) = (q(t)q(O». 

Since X" (x) ~yx/(Mw~) as x-O, we have 

A:!)/B:!' =flY/1TMw~, Aj =2. 

Then, (1.41) follows from (1.35). On the other hand at 
finite temperatures /3 -I > 0, (q(t)q(O» is not of the f~rm 
Wf3 (t) given by (1.22), because the frequency spectrum of 
(q(t)q(O» is equal to the whole real line R as is seen from 
(1.39). [The frequency (energy) spectrum of our models is 
equal to [m, 00 ).] This is a big difference between the model 
under consideration and ours. They also showed that, at fi­
nite temperatures, (q(t)q(O» decays exponentially. We re­
mark that, if one modifies the correlation function as 

( ) l"" dw· lie - i"" 
q(t)q(O) + = -X"(w) ---

o 1T 1-e-fJII'" 
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or 

[ 
d /ie-iwt 

(q(t)q(O» _ = _ _ :: X" (W) ---
_ " l-e- fJliw ' 

then one gets 

(q(t)q(O» + 
(- i)y . ~ 

1TMw6 t 

(q(t)q(O»_ - :: 4p 
t- "" 11: Wo t 

Namely, (q(t)q(O» ± have a power-law decay. This fol­
lows from an application of Theorem 2.1(a) in Sec. II. 

In Ref. 17, a generalized version of the model in Ref. 16 
was considered and a more detailed analysis on the long-time 
behavior of the correlation functions was done. As in the 
model in Ref. 16, the correlation function at zero tempera­
ture is a special case of our model and the result on the long­
time behavior coincides with ours, at least, up to t -2 order. 
As for the case at finite temperatures, the same remark as 
that concerning the model in Ref. 16 applies. 

In Ref. 12, they start from a discrete version of the mod­
el (M2) with respect to the boson degrees of freedom and 
derive the dynamical equation for the position operator of 
the oscillator. Then, they make an ad hoc assumption for the 
memory kernel so that the symmetrized autocorrelation 
function of the fluctuating force per unit mass ct>T (t) and the 
symmetrized autocorrelation function of the particle veloc­
ity CDD (t) take the form 

ct>T(t) = fly f"" dw W Pfzw . -....:..:....- coth -- e,wt 

w2 + Y 2 MTR - "" 21T 
(1.45 ) 

and 

C (t) = fly f"" dw w
3 

vv MT R _ "" 21T w2 + Y 
I 

( 1.46) 

respectively, where TR > 0 is a constant. They showed that, 
at finite temperatures, ct>T (t) and CDD (t) decayexponential­
ly as t -- 00 and, only in an intermediate time region, display a 
long time tail as const t - 2

• These results do not coincide with 
our results. This is due to the fact that, in the present case, 
the frequency spectrum runs from - 00 to + 00 as is seen 
from (l.45) and (1.46), which is an effect of the symmetri­
zation. Let ct>~ + ) (t) and C ~D+ ) (t) be the functions defined 
by the rhs of (1.45) and (1.46) with the integral interval 
replaced by [0,00 ), respectively. Then, we see that ct>~ + ) (t) 
and C ~D+ ) (t) display a power-law decay as 

I ct>~+ )(t) _ i 
t-"" 1TMTRP t 

and 

At zero temperature, we have 
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ct>T(t) = ~ Re {r"" dw 2 w y eiwt } , 
MTR1T Jo w + 
fly {lOO' w

3 

CDD (t) = ---Re dw 2 .;1. 
MTR1T 0 W + r 

X e
iwt 

}. 
Iw2 + (ylrR )[iwl(y - iw)] 12 

By integration by parts and applying Theorem 2.1 (a), we 
get 

(2' ( 1.47) 
t- 00 

( 1.48) 

These results are not given in Ref. 12. 
In Ref. 6, the authors start from the models (MI) and 

(M2) with a discrete boson degrees offreedom and calculate 
the momentum autocorrelation function C(t) of the oscilla­
tor 

with 

C(t) = Co(t) + C. (t) 

C.(t) = G(A)cos(At)dA, l "" I 

o efHU-I 

Co(t) =~ roo G(A)e-iA'dA, 
2 Jo 

( 1.49) 

( 1.50) 

( 1.51) 

where G(A) is a function depending on the choice of the 
models (MI) and (M2). The exact form ofG(A) was not 
given and, by assuming that G(A) _Am, they showed that, 
at low temperatures, C. (t) decays with a power law as t -- 00 . 
However, analysis on the long-time behavior of C. (t) at 
nonlow temperatures and of Co (t) (the correlation function 
at zero temperature) was not given. We note that (1.49) 
with (1.50) and (1.51) is exactly of the same form as Wp (t) 
given by (1.22) with m = O. This is easily seen by change of 
variable. Thus we can apply our results and solve the prob­
lem left in Ref. 6. One can easily check that our general 
results yield as a special case the partial result on the long­
time behavior of C. (t) obtained in Ref. 6. 

The rest of the present paper is organized as follows: In 
Sec. II, we establish a limit theorem on an integral of Four­
ier's type. In Sec. III, applying the limit theorem, we prove 
Theorem 1.1. In Sec. IV, we discuss an example of w. In 
Appendices A and B, sufficient conditions for (AI) to hold 
are given. In Appendix C, a necessary condition for expo­
nential decay of Fourier transforms is given. 

II. A LIMIT THEOREM 

In this section, we prove a general limit theorem con­
cerning an integral of Fourier's type. 

Letgbe a measurable function inL ·(m,oo ),dx). Weare 
concerned with the asymptotic behavior of the function 

GCt) = L"" g(x)e- itx'dx (t>0) (2.1 ) 

as t-- 00, where m;;.O and r> 0 are constants. We assume the 
following: 

Asao Arai 1281 



                                                                                                                                    

(A-g)m There exists a meromorphic function g(z) in 
Dm •o with the following properties: 

(a) limg(x - iE) = g(x), a.e. xE(m,oo), 
EIO 

(b) For all sufficiently small E>O and every a,b 
E(m,oo)(a<b), 

sup Ig(x - iE) I ..;Ca,b 
a<x<b 

with a constant Ca,b > 0 independent of E. 

(c) For all sufficiently large Izl (zEDm,o) 

Ig(z) I..;C /Izlq 

with constants C> 0 and q> 1. 
(d) g(z) has no poles in {zEDm,ollz - ml <Eo} with a 

constant Eo> 0 and the limit 

lim .!:g~(_m_+.:...-z.:-) 
z-o i"m 

exists with constants gm and.um > - 1. 
Under the assumption (A-g)m' we have the following 

theorem. 
Theorem 2.1: (a) Let m = O. Then 

- ht(p" + \) 12rr( ( + 1) / ) G(t) _ goe .uo r t - (p" + \)/r. 
t--- 00 r 

(b) Let m> O. Then 

Proof: We first consider the case m = O. Let 

h,(z) =e-iIZrg(z), t>O. 

(2.2) 

(2.3 ) 

Then h, (z) is meromorphic in Do. ° . Let E> 0,0> 0 be suffi­
ciently small, L > 0 be sufficiently large, and 0 < 00 < 0. Let 
r(E, 0, L, ( 0 ) be the curve in Do,o given by 

U {o - iE + se - iO"I0..;s..;L} 

U{o - iE + LeiUI - Oo..;u..;O} 

with the anticlockwise orientation and D(E, 0, L, ( 0 ) be the 
interior domain of r(E,o,L,Oo)' Let {ak}~= I be poles in 
DO,8" [Nis finite by (Ag)o (b)-(d)]. Then, by applying the 
Cauchy integral theorem to the integral of h, (z) along 
r(E,o,L,Oo) , we get 

L\,(X - iE)dx = 1\,(0 - iE +se- i8")e- iO"ds 

-21Ti L Res(h,(z),a k ), (2.4) 
0kED( E,6,L.8u } 
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where Res(h, (z),ad denotes the residu~ of h, (z) at z = a k 

[ we take r (E,o,L,Oo) so that a k Eir (E,o,L,O) for all k], We 
take 00 to satisfy 0 < rOo < 1T/2. Then we have by (A-g)o-( c) 

for all sufficiently large L with a constant C> 0 independent 
of L. Hence we get 

lim I h, (0 - iE + LeiU)iLeiu du = o. L-ooJ - eo 

For s;;;,so> 0, we have by (Ag)o-(c) 

Ih, (0 - iE + se - i8,,) I ";ae - bs' 

(2.5) 

with constants a > 0 and b> 0 independent of 0 and E. For 
o <s..;so, we have by (A-g)o-(d) 

I h, (0 - iE + se - iO,,) I ..; C 

if.uo;;;'O and 

Ih, (0 - iE + se - iO,,) I..;Cs"" 

if - 1 <.uo < 0, where C> 0 is a constant independent of 0 
and E. Therefore, Ih, (0 - iE + se - iO,,) I is dominated by an 
integrable function on (0,00) independent of 0 and E. Thus 
by the Lebesgue dominated convergence theorem we get 

lim r'''' h, (0 - iE + se - iO")e - i8" ds 
E,lilOJo 

(2.6) 

Similarly, using (A-g)o-(b)-(d), we can show that 
Ih, (x - iE) I is dominated by an integrable function on 
(0,00) independent of 0 and E>O. Thus by the Lebesgue 
dominated convergence theorem we get 

lim lim roo h, (x - iE)dx = roo h, (x)dx. (2.7) 
1i10 EIOJIi Jo 

Taking the limit L- 00 first, ElO second, and oW finally in 
(2.4) and using (2.5)-(2.7), we obtain 

(2.8) 

with 

(2.9) 

G2 (t) = - 21Ti L Res(h,(z),ad· (2.10) 
QkEDO.61" 

Note that (A-g)o implies that the number of poles of g(z) in 
Do.o" is finite. Hence the sum with respect to the residue in 
(2.10) is a finite one and we have 

(2.11 ) 

with a constant a> 0 and a polynomial pet) in t. On the 
other hand, by the change of variable s- t IIrs, we have 
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G1(t) =- exp[ -1(Se-,O,,)r]g -- e-,O"ds 1 100 

.' (se - iO") . 
t IIr 0 t IIr 

= exp[ - i(se-,O,,)r] 1 100 

. 

t(J.L,,+I)/r 0 

(2.12) 

where 

u(z) = g(z)/ff". 

It follows from (A-g)o-( c) and (d) that, for all s> 0, 

lu(se-iO")I..;;C/(l +s)J.L,,+q<C 

with a constant C> 0 (note that f-lo + q > f-lo + 1 > 0). 
Therefore, by the dominated convergence theorem, we get 
from (2.12) 

lim t(J.L,,+I)/rG1(t) =goI(Oo) (2.13 ) 
1- 00 

with 

J(r) = 100 

exp[ - i(se-ir)r] 

(2.14 ) 

The function ff" exp( - izr) is analytic in 
{ZEC! -1T<argZ<1T, z#O} and, if -1T<r(argz) <0, 
then it decays exponentially as Izl ...... 00. Therefore, by the 
Cauchy theorem, we have 

J(Oo) = J(1T/2r) 

= e - i( J.L" + l)l7l2r1°O e - s'sI-''' ds 

_ e-i(J.L,,+1)1T12T(f-lo + l)/r) 
r 

(2.15 ) 

Combining (2.11), (2.13)-(2.15) with (2.8), we obtain 
(2.2). 

We next consider the case m > O. By the change of vari­
able xr ...... x r - mr, we have 

with 

_ xr-lg(xr+mr)1I1 
g(x) = . 

(xr + mr)(r-I)/r 

Therefore, the problem is reduced to the case m = 0; we need 
only,to check that the function g(x) satisfies (A-g)o. 

Letg(z) beg(x) with zin place ofx. Theng(z) is mero­
morphic in Do,o and 

limg(x-iE)=g(x), a.e. XE(O,oo). 
EIO 

Hencegsatisfies (A-g)o - (a). 
To prove (A - g)-(b), we note that, for 

O<a<x<b< 00, 

[(x - iE)r + mr] IIr = (xr + mr) IIr 

iE + a(c) 
(xr + mr) (r- 1)/rxi - r 
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as EW. Therefore, by the assumption (A-g)m-(b), we get 

sup Ig([ (x - iE)' + mr] IIr)1 ";;C1 
a<x<b 

with a constant C1 > 0 independent of E. Further, it is easy to 
see that 

I 
(x - iE),- I I sup ";;C2 

a<x<b [(x _ iE)' + mr] (r- 1)lr 

with a constant C2 > 0 independent of E. Therefore we get 

sup Ig(x-iE)I,,;;C3 
a<x<b 

with a constant C3 > 0 independent of E. Thus g satisfies (A­
g)o-(b). 

For sufficiently large 14 we have from (A-g)m-(c) 

Ig(z) I..;; constlzl
r
-

I 

Izr + mrl (r- 1)/r(zr + mr)qlr 

const 
";;--. 

Izlq 

Therefore (A-g)o-(c) follows. 
We have 

(zr + mr) IIr -m + m l - rzr/r 

as z ...... O. Hence (A-g)m-(d) implies that g(z) has no poles 
in {zEDo,o 1 Izl < Eo} with a sufficiently small Eo and 

lim _--=g,-(_z ) __ 
z-O zr(J.Lm+ I)-I 

m (I - r) ( J.Lm + I) 
gm 

Therefore (A-g)o-(d) holds with go = gm 

m(\-r)(J.Lm+l)/rJ.Lmandf-lo = r(f-lm + 1)-1. 
Thus we can apply the result in the case m = 0 to g(x) 

and get (2.3). 

III. PROOF OF THEOREM 1.1 

We can write 

W(t,J) = Loo g(x)e- itx' dx 

with 

(x) = f(x)JU)(x) 

g x 2ra + jlD <::? (x) 12 

We shall show that g satisfies (A-g) m in Sec. II. Then 
Theorem 1.1 follows from an application of Theorem 2.1. 

Let 

D<-t)(z) =DU)(z) -21TiJU)(z), ZECm, 

and define 

f(z)JU)(z) 
g(z) = zZra+jD <::? (z)D (j)(z) 

Then, g(z) is meromorphic in Dm,o' Note that D ~ (x) is 
given as 

D ~ (x) = aiJ) - ap)x + OIJ fP(k)2 dk 

+ pf w(k)jp(k)2 dk 
x - w(k) 

+ 21TiJU) (x), 
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where P denotes the principal value. Hence we have 

limDcr(x-iE)=Dcr(x), a.e. xE(m,oo). 
EIO 

Therefore, together with the fact D + (x) = D _ (x), we get 

limg(x - iE) =g(x). 
EIO 

Thus g satisfies (A-g) m-(a). 
Property (A-g)m-(b) follows from (AI) (b), 

(All) (d) and properties off 
By (1.17) and (All-b), we have for all sufficiently large 

Ixl 

inflD cr (x - iE) I>Cx 
E>O 

with a constant C> O. Further, it is easy to see that, for suffi­
ciently large Izl with 1m z < - E, zEDm.l1 , 

IDcr (z)I>CElzi. IDU)(z)I>C.lzl 

with a constant C. dependent on E> O. Combining these 
properties with (AI) (b), (All) (b), and (fI), we have for 
sufficiently large Izl (ZED m.l1) 

Ig(z) I <const/lzl 2ra 
+H qj+ 2. 

Since we assume that 2ra + j + qj + 1 > 0, we have 
2ra + j + qj + 2> 1. Therefore, (A-g) m -( c) follows. 

The poles ofg(z) come only for the zeros of D cr (z) and 
the poles off(z). The zeros of D cr (z) are discrete and do 
not accumulate in Dm.l1 . It is obvious that D cr (z) [resp. 
f(z)] has no zeros (resp. poles) in a small neighborhood of 
z = m in Dm.11 [recall that we assume d~) > 0, see (1.15)]. 
As for the asymptotic behavior of g(z) as z--m, we have 

A U)f' 
(z) _ 0 )0 z-2ra- j -ao(f) +Pj(O) 

g z-oD cr (O)D (j)(0) 

in the case m = 0 and 

A (jlj, 
g(m+z) _ m m z-am(f)+p/m) 

z-o m 2ra + iD cr (m)D (j)(m) 

in the case m > O. Therefore, g satisfies (A-g) m -( d). 
Thus we can apply Theorem 2.1 to obtain Theorem 1.1. 

IV. AN EXAMPLE 

In this section we consider an example of (j) and see how 
Pj (m) is determined by the dimension d and the infrared 
property of (j) andp, wherepj (m) is defined by (AIl)-(c). 

Let 

(4.1 ) 

with a parameter A. > ° (see also Appendix A). Then the 
inverse function 1](x) of (j)1 (x) is given by 

(4.2) 

Letpl be a continuous function on [0,00) satisfying 

PI(X»O, XE(O,oo), 

and P be given by 

p(k) =PI(/kl), kERd. (4.3) 

We assume that PI has an analytic continuation PI (z) onto 
the domain DO.l1p with a constant OpE(0,1T12) such that 
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limpl(x-iE) =PI(X), XE(O,oo). 
EIO 

With (j)1 and PI given above, the function I(j)(x) de­
fined by (1.26) takes theform 

(4.4) 

where 

(4.5) 

Lemma 4.1: Assume that, for sufficiently large Izl 
(zEDol1 ), 

• p 

I PI (z) I <C Ilzlq( p) 

with constants C> ° and q( p) > ° and that 

1. PI (z) 
Im--=po 

Z_O zy( p) 

with constants y( p»O andpo#O. Suppose that 

q( p)IA. - j + 1 - d 12..1>0 

and, in the case m = 0, 

(4.6) 

(4.7) 

( 4.8) 

(d - 2)/2..1 + j + (1-..1)/..1 + y( p)IA.>O. (4.9) 

Then r j
) (x) satisfies (AIl)(a)-(c) with qj given by 

qj=q(p)IA.-j+1-dl2..1 (4.10) 

and 

m=O, 
p,(m) = (d-2)/2+y(p), 

{

Cd - 2)/2..1 + j + (1-..1)/..1 + y( p)IA., 

m >0 (4.11) 

Proof For a sufficiently small 6lE(0,1T12), 1](z) is de­
fined and analytic in D m.11 and the image of 1] is included in 
Do 11 • Therefore the function 

• p 

IU)(z) = Vd1](Z)d-2ZH(I-A)/Apl(1](Z»)2 

2..1 
( 4.12) 

is analytic in Dm •l1 . It is obvious that (All) (a) holds. 
For sufficiently large Izi (zEDm•l1 ), we have 

CllzIIIZA< 11](z) I <C2 Iz llI2A 

with constants Ck > 0, k = 1,2, and hence 

II U) (z) I <const Izl - qj, 

with qj given by (4.10). Therefore, (AII)-(b) follows. 
Let m > 0. Then we have 

1](m+z) _ (m(l-A)/AIA.)1/2z Il2 
z-o 

and hence 

PI(1](m + z») - po(m(\ - A)/A IA.)Y( p)IZzY( p)12. 
z-O 

Therefore we get for m > ° 
2V 

I (j) (m + z) _ Po d (m(l -AliA IA.)Y(P) + (d- 2)/2 
z-o 2..1 

X mi + (I - A)/AZY( p) + (d - 2)12. 
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In the case m = 0, we have 

I (j) (z) _ P6 Vd Z(d - 2)/2A + j + (I - A)/A + Y( p)/A. 

z-o 2A 
Thus (AII)-(c) is satisfied with Pj (m) given by Eq. 
(4.11). 0 

Remark: Condition (All) (d) follows from the same 
assumption as in Lemma B 1 (see Appendix B). 

It is interesting to compare the decay order of W(t) in 
the case m = 0 [i.e., Aj given by (1.34)] with that in the case 
m > 0 [i.e.,pj (m) + 1]. By (4.11), we have 

Pj(O) = pj(m)/A + j + (1 - A)/A, 

where we take m > o. 
Hence we get 

6.j =Aj - (Pj(m) + 1) 

= ((1-Ar)/Ar)(pj(m) + 1) - 2a. 

If 6.j > 0 (resp. 6.j <0), then W(t) with m = 0 decays faster 
(resp. slower) than W(t) with m > O. 

get 

get 

get 

In the models (Ml )-(M3), 6.j is given as follows: 
(Ml): In this case, we have r = 1, a = j = O. Hence we 

6.0 = ((1 - A)/A )(po(m) + 1). 

(M2): In this case, we have r = a = ~,j = o. Hence we 

6.0 = (2 - A)/A )(po(m) + 1) - 1. 

(M3): In this case, we have r = a = !,j = 1. Hence we 

6. 1 = (2 - A)/A )(PI(m) + 1) - 1. 

In the standard case, A is taken as A = ! (resp. 1, 1) in 
the model (Ml). [resp. (M2), (M3)]. Therefore, in this 
case, W( t) with m = 0 decays faster than W( t) with m > 0 
in each model. 

ACKNOWLEDGMENT 

Proof We can write 

<I>~)(x - i€) = (Q£*J(j» (x) + i(P£*J(j», (A4) 

where P£ and Q£ are the Poisson and the conjugate Poisson 
kernel, respectively, 

P£ (x) = d(x2 + ~), QE (x) = x/(x2 + ~), 
and * denotes the convolution. Let <I>~) (x) be the Hilbert 
transform of JU) , 

<I>(j) (x) = P --.J!l ds. f 
J(j) 

P x-s 

Then, by the assumption JU) Elf (R) and a general theorem 
[e.g., Ref. 19 (Chap. VI, Lemma 1.5)], we have 

QE*J(j) = PE*<I>~)· 

Further, condition (A2) implies that <I>~)(x) is continuous 
in XER with <I>~) (x) -0 (lxi- 00) and hence, in particular, 
<I>~) is bounded [e.g., Ref. 18 (§S.IS)]. Similarly, it follows 
that JU) (x) is bounded. It is well-known (or easy to prove) 
that 

I (PE */) (x) I "' 1Tllfll 00 

for all/a 00 (R). Therefore, we get 

I (QE*J (j» (x) I"' 1TII<I>~) II 00 , 

I (PE *J (j» (x) 1 "' 1TIIJ (j) 1100 . 

From these estimates and (A4), we obtain (A3). 0 
Remark: Condition (A2) implies the continuity of 

JU) (x) and hence 

xlm 

A sufficient condition for (A2) to hold is the following 
lemma. 

Lemma A2: Let 

u(x) = 7](X)d-I7]'(X), xE(m,oo), 

and P be given by 

p(k) =PI(lkl), kERd, 

(AS) 

(A6) 

This work was supported in part by the Grant-In-Aid with a continuous function PI on [0,00). Assume that 
63740063 and 62460001 for science research from the Minis-
try of Education, Japan. (a) lim u(x) = 0, 

APPENDIX A: UNIFORM BOUNDEDNESS OF «I>~j)(X-iE) 

In this appendix, we consider a sufficient condition for 
<I>~j)(z) to satisfy (AI)(a). We define thefunction J(j)(x) 

onRby 

J(j)(x) = x , 
{
I (j).( ) 

0, 
x>m, 

x",m, 

where I (j) (x) is given by (1.26). 

(Al) 

Lemma AI: Suppose that J (j) is in L peR) with some 
pEe 1, 00 ) and satisfies the Lipschitz condition 

IJ(j)(x + h) - J(j)(x)1 <K Ih la (A2) 

uniformly in x, as h - 0, with constants aE (0,1) and K> o. 
Then there exists a constant C> 0 such that, for all XER and 
€>O, 

(A3) 
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xlm 

(b) 7](x) _C."x8(.,,), 

u(x) _C
u
x 8(U), 

PI (x) -Cpx - 8(pl, 

(A7) 

(A8) 

(A9) 

as x- 00, with strictly positive constants C.",Cu , Cp' 8(rj}, 
8(u), and 8(p). 

(c) For all sufficiently smallih 1<1 (hER) 

17](x + h) -7](x)I",P.,,(x)lh 1£('1), xE(m,oo), (AlO) 

lu(x + h) - u(x) I "'Pu (x) Ih IE(U), xE(m,oo), 

Ipl(x + h) -PI(x)I",Pp(x)lh IE(Pl, XE[O,oo), 

(All) 

(AI2) 

with strictly positive constants €(7]), €(u), €(p), and non­
negative polynomially bounded continuous functions P.", 
P u , and Pp on R. Suppose that 

28(7])8(p) - 8(u»0, (AI3) 

sup P
u 
(x)xj - 28(Tf)8(p) < 00, (AI4) 

x>m 
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sum Pp(1J(x) )P1/ (x)E(p)xi+ Il(u) -1l(1/)Il(p) < 00. (AI5) 
x>m 

Then, (A2) holds . 
. Proof Letx;;;.m and Ih I < 1 be sufficiently small. We set 

]<.i) (m) =0. Then we have 

JU)(x + h) - JUl(x) 

=IU)(x+h) -IUl(x) 

= Vd(FI(x,h) +F2(x,h) +F3 (x,h»), 

where Vd is given by (4.5) and 

FI(x,h) = (u(x + h) - u(x»)(x + h)jPI(1J(X»)2, 

F 2(x,h) = 8 IJ u(x)PI(1J(x»)2h, 

F 3 (x,h) = u(x + h)(x + h)j[PI(1J(x + h») + PI(1J(X»)] 

X [PI(1J(X + h») - PI(1J(X»)]. 

(In the case x = m, we take h > 0.) By the assumption, we 
can estimate as 

(xi + 1 )Pu (x) Ih IE(U) 
IFI (x,h) I <const , I + X21l(1/)Il(p) 

xll(U)lh I 
1F2(x,h) I <const , I + X21l(1/)Il(p) 

IF3 (x,h) I 
(l + X)Il(u)+jp (1J(x»)P (x)E(P)lh IE(1/)E(P) 

<const p 1/ 
(I + XIl(1/)Il(p» 

These estimates together with (A13)-(AI5) imply (A2). 
In the case x < m, (A2) trivially holds. 0 

We conclude this section with an example of W I and P I' 
Let WI be given by (4.1). We suppose that AE(O,I]. 

Then, u (x) defined by (A 5) takes the form 
x(\ - A)/A(X IIA _ milA.) (d - 2)12 

u(x) = ---~---....:...---
2A 

_ x(\ - A)/A
1J

(X)d - 2 

2A 
(AI6) 

where 1J(x) is the inverse function of WI [see (4.2)]. If 
d> U, then we have 

X(d- 2A)12A 
1J (x) _XI12A u(x) -----

, 2A 
(AI7) 

as x -+ 00 and hence (A 7) and (A8) hold. 
To prove (AlO) and (All), we first note the following 

elementary estimate. 
Lemma A3: Let a > O. Then, for all sufficiently small 

E> 0 and I hi> 0, 

l(x+h)a-xal<C(l+xa-E)lhI E, x;;;'O, (AI8) 

with a constant C> 0, where, in the case x = 0, we take h > O. 
Proof' It is sufficient to prove (A 18) for h > 0 and x > O. 

Let DE(O, 1) be fixed and x;;;.h 18. Then we have h Ix<8 < 1 
and hence 

(x + h)a = xa(l + h Ix)a<xa(1 + C(h Ix») 

with a constant C> O. Therefore we get 

0< (x + h)a - xa<Cxa(h Ix) 
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In the casex<h 18, we have 

0< (x + h)a - xa<{(l + lI8)a + lI8a}h a. 

Thus (AI8) follows. 0 
Lemma A4: Let 1J(x) be the inverse function of WI [see 

( 4.2) ]. Then, for all sufficiently small € > 0 and I hi, we have 

11J(x + h) -1J(x) I <const( 1+ X(II2A) - E) Ih IE (AI9) 

for the case m = 0, and 

11J(x + h) -1J(x)l<const[x(\ -A)!2A 

+ (XIIA _ milA) (\12) - "x( 1- A)EIA] Ih IE 

(A20) 

for the case m > O. 
Proof' We first consider the case m = O. Then we have 

1J(x+h) -1J(x) = (X+h)1/2A_XIl2A, x>O. 

Therefore, by Lemma A3, we get (AI9). 
Let m > 0 and m > h > O. Then we have 

1J(x + h) < {X IIA (1 + C(h Ix») - m IIA}1 12, x;;;'m, 

with a constant C> O. Therefore, we get 

0< 1J(x + h) - 1J(x) <x(\ - A)12A{(X + Ch) ti2 - X 1/2} 

with 

X = (X IIA _ m IIA)X(A - \)/A. 

Therefore, using Lemma A3, we get (A20). 0 
WeintroduceafunctionO+(x) on [0,00) by 

O+(x) = {I, x>O, (A2l) 
0, x=O. 

Lemma A5: Let u be given by (AI6). 
(a) Letm = 0 and d;;;.U. Then, for all sufficiently small 

€ > 0 and I hi> 0, 

lu(x + h) - u(x) I 
<const(I + 0+ (d - U)X(dl2A> - I -llh IE, 

x;;;'O, (A22) 

(b) Let m > 0 and d;;;.2. Then, for all sufficiently small 
€>Oand Ih 1>0, 

lu(x + h) - u(x) I 

<const{I + 0+ (d - 2)(x + I )[d- 2 - 2AE+ 2(\ -A)E]12A 

+ 0+(l_A)X(d-2A-2E)!2A}lh IE, x;;;.m. (A23) 

Proof (a) The case d = U is trivial, since we have 
u(x) = lilA. Let d> U. Then, we have 

u(x + h) - u(x) = (l/U){(x + h)(d-2A)!2A 

Therefore, applying Lemma A3, we get (A.22). 
(b) We prove (A.23) only in the case d> 2 and 

o <A < 1. The other cases are easier. We write 

u(x + h) - u(x) 

= (lIlA) [(x + h)(\ - A)/A - x(\ -A)/A ]1J(x + h)d- 2 

+ (lIU)X(\-A)IA(1J(x+h) -1J(x») 

d-3 
X L 1J(X + h)d- 3 - i1J (X)i. 

i=O 
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Then, LemmasA3,A4, (A.19),and (A.20) give (A.23). 0 
Lemmas A4 and A5 show that (A. to) and (A.II) hold. 
As for PI' one can easily find a number of examples 

which satisfy the conditions required. For example, one can 
take functions of the form 

PI(X) = Q(x)/[1 +P(x)], x;;;'O 

where P(x) and Q(x) are polynomials with positive coeffi­
cients and deg P - deg Q> 0 is sufficiently large. 

APPENDIX B: ESTIMATE FOR I[JOJ(x-iEJl 
In this appendix, we consider a sufficient condition for 

(AI)(b) to hold. 
Lemma Bl: Suppose that p(k) > 0 for all k#O. Then, 

under the assumption in Lemma AI, (AI) (b) holds. 
Proof We have 

D <!l (x) = aiP- ap)x + ~IJ f p(k)2 dk 

+ ~~)(x) + i1r/ U) (x). (BI) 

As stated in the proof of Lemma AI, ~~) (x) is continuous in 
xERand 

(B2) 

as Ixl- 00. Therefore D <!l (x) is continuous on R. [For 
x < m, D <!l (x) = DU) (x).] By the Remark after the proof 
of Lemma A 1 and condition d r:,) > 0 [see (1.15) ], we have 

inf ID<!l (x)1 >0 
x';m+fj 

with some constant ~ > 0 and hence, taking (1.16) into ac­
count, we get 

inf 
£>0 

xe[m.m + fj) 

ID U) (x - iE) I> O. 

It follows from (B l) and (B2) that 

ID <!l (x) I;;;.const x 

(B3) 

for x;;;.R with a sufficiently large R > O. Combining this esti­
mate with (1.16), we get 

inf ID w(x - iE) I> O. (B4) 
£>0 

The positivity of P together with that of 71 and 71' implies that 

inf /U)(x) >0. 
fj.;x.;R 

Hence we have 

inf ID<!)(x)1 >0, 
fj.;x.;R 

which, together with (1.16), gives 

inf ID U)(x - iE) 1>0. (B5) 
£>0 

fj.;x.;R 

Estimates (B3)-(B5) yields (AI) (b). 

APPENDIX C: A NECESSARY CONDITION FOR 
EXPONENTIAL DECAY OF FOURIER TRANSFORMS 

o 

In this section, we give a necessary condition for the 
Fourier transform/(t) of an L 2(R) function/(x) to decay 
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exponentially as t - 00 and hence a sufficient condition for/ 
under which/ does not decay exponentially. 

Proposition CJ: Let/#O be in L2(R) and/(t) be the 
Fourier transform off, 

A 1 Joc /(t) =-- e-itx/(x)dx, fER. 
.J2ii - oc 

Suppose that there exist positive constants C> 0 and a> 0 
such that, for all fER, 

(Cl) 

Then, suppf, the support off, equals the whole real line R. 
Proof [cf. Ref. 15 (§7.3, Theorem 3.3)] It follows from 

(C.l) and a general theorem [e.g., Ref. 3 (§9.3, Theorem 
9.13)] that/ex) has an analytic continuationj(z) to the set 
Sa == {zl 11m zl < a}. Suppose that supp / # R. Then, the set 
A = Rlsupp/is an open set in R and/(x) = 0 for all xEA. 
Hence j(z) = 0 for all zEA. Therefore, it follows from an 
elementary property of hoi om orphic function that/(z) = 0 
for all zESa • But this contradicts the assumption that /(x) 
does not vanish identically. Thus supp/must be equal to R. 

o 
From Proposition C.1, we have 
Corollary C2: Let g # 0 be in L 2 (R) and put 

Ga•b (t) = i b 

e - itXg(x)dx. 

Suppose that - 00 ,a < b < 00 or - 00 < a < b, 00. Then, 
Ga•b (t) does not decay exponentially as If 1- 00. 

Proof We need only to apply Proposition Cl with 

/ = .J2iiX[a.b 19, where X[a.b I is the characteristic function on 
[a,b]: X[a.b I (x) = I, xE[a,b]; X[a.b I (x) = 0, XEl[a,b]. 0 
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Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter 
equations related to the simple Lie algebras are investigated. These models are diagonalized for 
rational and trigonometric solutions in the cases ofsl(N)/gl(N)/, o(N) and sp(N) algebras. 
The analogy with the quantum inverse scattering method is demonstrated. 

I. INTRODUCTION 

As is well known, the classical and quantum Yang-Bax­
ter equations (CYBE and QYBE, respectively) playa cen­
tral role in the theory of classical and quantum integrable 
systems. 1,2 In the case of CYBE a classification of their non­
degenerate solutions related to the simple Lie algebras was 
given. 3 In this paper we investigate quantum integrable sys­
tems associated with these solutions. They are generaliza­
tions of Gaudin's models. 4

•
5 Given a finite-dimensional Lie 

algebra g and its representation T = ® 1j, Gaudin looked 
for sets of mutually commuting operators ~ -special ele­
ments of corresponding representation of enveloping algebra 
(Ref. 5, Sec. 13.2.2), 

M 

"" J . 1 H) = £.. £..w'aX~Xa' 
1= 1 a 

1#) 

(1.1 ) 

where X ~ represents generator Xa in 1j and then simulta­
neously diagonalized these operators in the case of su (2) 

when W~' were trigonometric and rational functions of some 
coupling constants (Sec. IV) and for u(n) in the rational 
case. We show that for such systems the classical r matrix 
plays an analogous role as the quantum R matrix in quantum 
integrable systems associated with QYBE (see Ref. 2). We 
also diagonalize some models of interest [e.g., for trigono­
metric solutions of CYBE for generalized Toda systems of 
types A ~ 1), B ~ 1), C ~ 1), and D ~ 1) (Ref. 6)]. 

The crucial inspirations of this paper were Faddeev's 
footnote, 7 that Hamiltonians of type (1.1) solve CYBE as 
well as Gaudin's work on the su (2) case4

,5 and Refs. 8 and 9 
dealing with group-invariant generalizations of Heisenberg 
spin chains. 

II. CLASSICAL YANG-BAXTER EQUATIONS 

CYBE is a functional equation 1 

[rol(A),ro,d,u)] + [roo,(A-,u),rol(A) + rO'1 (,u)] =0, 
(2.1 ) 

where rCA) is ag®g-valued function of complex parameter 
A, g being a finite-dimensional Lie algebra and 
roo, (A) = rCA) ® I, rO'1 (A) = I ® rCA), etc. Ifr(A) is a solu­
tion of (2.1) then (Pi ®Pi) rCA), where (Pi> Vi)' (Pi' Jj) 
are irreducible representations of g that also solves (2.1). 
Classification of nondegenerate solutions for simple Lie al­
gebras was given in Ref. 3. Such a solution is a meromophic 
function that has a pole of first order at A = 0 with residue 

res rCA) = KabXa ®Xb , (2.2) 
,1=0 

where Kab is the matrix inverse to the Killing matrix Kab . In 
the following we shall use two properties of nondegenerate 
solutions r(A)3: 

( 1) r(A) fulfills the so-called unitarity condition 

rOI ( - A) = - rIO (A); (2.3) 

(2) if YEr [r is the set of discrete poles of r(A) ], then 

rCA + Y) = (Ay ®I)r(A) = (/®A -1)r(A), 

(Ay ®Ay)r(A) = rCA), 
(2.4 ) 

where Ay is an automorphism of g (for its form see Ref. 3). 
Well-known nondegenerate solutions are, for instance, 

the rational solution 

rCA) = (lIA)KabXa ®Xb 

and the trigonometric solution 

ei,1 

rCA) =cotanX!.HaXHa +-.- L Ea ®E_ a 
smA a>O 

(2.5) 

e- iA 

+-.- L E_ a ®Ea, (2.6) 
sm A a>O 

where H a , Ea is the Cartan-Weyl basis for g,2,6 Solution 
(2.6) is equivalent (in sense of Ref. 3) to 

"exp[iA (1 - (2!n)p(a»)] E E (2.7) + £.. ' 1 a ® - a' 
a SIn /l 

where p( a) is the height of the root a (mod n) with n being 
the Coxeter number. 
III. QUANTUM iNTEGRABLE SYSTEMS 

Now consider a finite chain of M sites. The space of 
quantum states at each site i = 1, ... ,M will be the represen­
tation space Vi for representation (Pi> Vi) of g. Then the 
space JY' = VI ® ... V M is the quantum state space for the 
system. With the notation 

ril(A) = (Pi®Pi)r(A), i,j=O,O',I, ... ,M, 
M 

L(A) = L rOi(A - Ei ), rCA) = roo, (A), 
i= I 

(3.1 ) 

where Ei are arbitrary constants and the indices 0 and 0' refer 
to the fundamental vector representations, we can-as a 
consequence of (2.1 )-write 
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[L(A) ®I, I ® L(,u)] 

+ [r(A-,u),L(A)®I+I®L(,u)] =0. (3.2) 

In more compact obvious notation, 

[La (A), Lb (,u)] + [rab (A - ,u), La (A) + Lb (,u)] = O. 
(3.3 ) 

Denoting T(A) = ~ TroL2(A), where Tro is the trace 
taken only over the first factor in g ® g, we have the following 
lemma: 

Lemma: 

[T(A). T(,u)] = o. (3.4 ) 

Proof: The Laurent expansion of T(A) in A = Ei 

+ y, YEr is using (2.2), (2.4) and the invarianceofKilling 
form 

1 C~ Hi 
T(A) =- 2 + + .... (3.5) 

2 (A - Ei - Y) A - Ei - Y 

where Hi = :I.j#i rij(Ei - Ej ) and C~ is the second-order 
Casimir operator (Kab X ~ X ~) in representation (Pi' Vi)' 
Further, for i=fj. 

[H;.Hj ] = [I rjk(Ej -Ek ). I ri/(Ei -EI )] 
k #j I#i 

= I {[ rjk (Ej - Ek ). rik (Ei - Ek )] 
k 

+ [rjdEj -Ek).rij(Ei -Ej )] 

+ [rji(Ej-Ei).ridEi-Ek)] =0. (3.6) 

where we used CYBE and unitarity of rCA), (2.3). So the 
function [T(A). T(,u)] has no poles and according to the 
Liouville lemma it is identically zero. 

The following relation can be proved using only (3.2) 
and the trace properties 10 

[T(A). L(,u)] + [Tro(r(A - ,u)(L(A) ®I») 

+! Tro ~(A - ,u). L(,u)] = o. (3.7) 

Note that computing the residue of (3.7) at A = Ei yields 
with (3.5) quantum equations of motion i(dL(,u)/dt) 

= [Hi' L(,u)] in the Lax form 

i dLd~) = [,r:sEj(Tro(r(A - ,u)(L(A) ®I») 

+ ~ Tro~(A-,u»),L(,u)] =0. (3.8) 

IV. PREPARATION OF DIAGONALIZATION OF H, 

Let ea/1 be the basis of gl(N). (ea/1) ij = 0ai 0/1j' al ./3,. i. 
j = 1 •...• N. We embed g = An.Bn. C I1 .D" intogl(N) with 
N = n + 1. 2n + 1. 2n. 2n, respectively. Here L(A) deter­
mined by (3.1), (2.5), and (2.6) (with an appropriate nor­
malization) can be written in one formula. 

L(A) = I{/(A - Ei)Ieaa ®X~a +g(A - Ei ) 
, a 
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where 1(..1.) = g(A) = 1/..1. for the rational case, and 
1(..1.) = cotan A. g(A) = eiA. /sin A for the trigonometric 
case. The elements XaP of g satisfy the commutation rela­
tions: 

(1) [XaP' X l'li ] = 0pl'Xali - {jaliXl'P; 

for g= An; 

(2) forg=Bn • Cn. Dn. 

[XaP' X l'li ] = 0fJl'Xali - OaljXl'fJ 

+ EaEfJO{j·fJXl'a· - EaEfJOa'yXfJ'Ii' 

(4.2) 

XafJ = - EaEfJXfJ'a" a' = N + 1 - a, (4.3) 

where Ea=1 for Bn and Dn; Ea =I(1<a<n). 
Ea = - 1 (n + l<a< 2n) forCn • In the case of An. we have 
to assume the representations (Pi> Vi) ofsl(N) appearing in 
( 4.1) and (4.2) are obtained as reductions of representa­
tions (Pi' Vi) of gleN) with generators X ~p; explicitly, 

Xaa = Xaa - (1/N)ll/1/1' 

XaP = X afJ • a =1=/3. 
(4.4) 

Since the commutation relations for these two sets of genera­
tors are identical. we can always take gl(N) instead of sl (N); 

ifit were of interest to pass to the sl(N); one would only pass 
from the weights m j to mi - (1/N):I.~ [in formulas 
(5.11) and (5.12) below]. 

The corresponding r matrices can be written similarly as 
(4.1 )6: for gleN), 

rCA) =/(A):I.eaa ®eaa + g(A) I eaP 
a<fJ 

® efJa + g(A) I eafJ ® efJa (4.5) 
a>fJ 

and for o(N) and sp(N) 

rCA) =/(..1.) I eaa ® (eaa - ea·a,) + g(A) I eafJ 
a<fJ 

® (efJa - EaEfJ ea·f1') + g(A) I eap 
a>fJ 

® (epa - EaEpea'fJ')' (4.6) 

Note that it is not hard to see, using explicit forms (4.1), 
(4.5). and (4.6) and the Liouville lemma, that 

[Tro~(A-,u),L(,u)] =0. (4.7) 

which simplifies (3.7) in the considered cases. For all cases, 
the Hamiltonians have the form 

+g(Ej - Ej ) I X~p X{m +g(E, - Ej ) 

a<fJ 

(4.8) 

It is now clear from the above formulas. that it does not 
matter that o( 4) is not simple. 
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v. DIAGONALIZATION OF HI IN THE CASE 
9=gl(N)(sl(N» 

In analogy with Ref. 8 we write the N X N matrix L in 
block form as 

(
A(A) B(A») 

L(A) = e(A) D(A) , (S.1 ) 

where B(A) is a row with N - 1 components 
(B I, ... , BN- I ), C(A) is a column, and D(A) is an 
(N-l)X(N-l) matrix. The N 2 XN 2 r matrix (4.S) 
takes in this basis the form 

o 
g(A)IN_I 

o 
o seD 

(S.2) 

where S(A) is an (N - 1) X (N - 1) matrix and has the 
same structure as r(A). The following commutation rela­
tions [derived from (3.2) in the block form] will be useful: 

[A(A),B(p)] = -/(A-p)B(p) +g(A-p)B(A), 

[Da(A),Bb(p» = -g(A -p)Ba(A) 

+Bb(P)Sab(A -p). 
From (3.7) 

[T(A), B(p)] = g(A - p)A (p )B(A) 

+ B(p ) Tro(s(A - p )D(A) ® 1) 

- I(A - p)A(A)B(p) 

- g(A - p)B(A)D(p). 

(S.3 ) 

(5.4 ) 

(S.S) 

Now let the spaces VI"'" V M be the representation 
spaces of gl(N) , corresponding to the highest weights 
(mi, ... , m;"). Let Jf'°CJf' denote the subspace of vectors 
veJY such that 

X;I v = miv, X~I v = 0, a = 2, ... , N, (5.6) 

i.e., ~ = VIO ® ••• V~, where V7c Vi corresponds to the 
embedding of gl(N - 1) Cgl(N) and is an irreducible 
gl(N - 1) representation space of the highest weight 
(m7, ... , m;"). We construct (in analogy with Ref. 8) vec­
tors 

hi = - I/(Ei -A il»mi + I/(Ei - Ej)m:mJ 
k j#i 

+ I/(Ei -Ej)m;"mf+ I/(Ei -AiN-I»m;", 
j#i k 

and for sets {A k I l} ~=-/ k:' 1 conditions that guarantee the 
canceling of "unwanted" terms in each step of this recursive 
procedure: 

2 I I(A i\) -A i\) - .I/(A i\) - Ej)mJ 
I#k j 

+ I/(A i l
) - Ej)m; - I/(A ill -A ?» = 0, 

j I 
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F= Bi'(A P»·· 'Bin'(A ~1»Fl~)'i . (S.7) 
I J"I 

We use the summation convention for pairs of upper and 
lower indices and introduce the space fft:> = Jf' ° ® 

V~ + I ® ••• V~ + n,' where V~ + i are the representation 
spaces eN - 1 for the fundamental representation of gl 
(N - 1). Here, FW& will be specified later. Further we 
denote 

HE; = ~ r~ TroL2(A) = res)"(A), 
A.=£j A.=tEj 

(5.8) 

where {Ej}~~ n, = {EI , ••• , EM' A l1), ... , A ~:)} and L(A) 
is defined as in (3.1) for an extended chain of (M + n I) sites 
with gl(N - 1) spins with represenfation spaces Vi = V7, 
i = 1, ... , M + n l • The aim is now to commute the T(A) 
over all Bi'S in F using the commutation relation (S.S) and 
then using (S.3) and (S.4) to commute the occurring A 's 
and D's over the remaining Bi'S to the right. Using (5.6), 
sampling together the "wanted" terms [containing the Bi'S 
with the same arguments as in (S.7)] and the "unwanted" 
terms (there occur for every k such terms in which the argu­
ment A i I) in Bik is changed by A), demanding that the "un­
wanted" terms cancel and assuming that according to (3.5) 
Hi = res T(A), we can prove the following theorem [for 

A= Ej 

analogy with GL(N)-invariant generalization of Heisen­
berg magnetic chain see Ref. 8]. 

Theorem 1: Vector (S.7) is an eigenvector of Hi with 
eigenvalue 

hi = - I/(Ei -Ai\)mi 
k 

+ I/(Ei - Ej)mimJ + hE;' (5.9) 
Ni 

if F(l)& is an eigenvector of fft:>E; with eigenvalue hE; and the 
set {A i\)};:'= I satisfies the equations 

I I(A i\) - A )1» - If(A il
) - E.)m l + h (I) = O. 

I #k j J J A k 

(S.lO) 

Then, using embeddings gl(N) :::>gl(N - 1)'" :::>gl(2) 
and repeating the recursive procedure following from 
Theorem 1, we have for the eigenvalues of Hi, 

( 5.11) 

2 I I(A is) -A V» - .I (A is) - Ej)mj 
I#k j 

- I/(AiS)-AiS-\) + .I/(AiS)-Ej ) 
I j 

xmj+ 1_ I/(A is) - A is+ \) = 0, 
I 
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2 I /(A iN-I) -A iN-I» - Ij(A iN-I) - t)mf-I 
l#k j 

- I/(A iN-I) - A jN- 2» 
I 

+ I/(A iN-I) - tj)mf = O. (5.12) 
j 

These equations are also conditions that the poles of T at 
A = A ki

) disappear. 

VI. DIAGONALIZATION OF Hi IN THE CASES g=o(N), 
sp(N) 

Wheng = o(N), we write L(A) in the block form 

L(A) = C(A) D(A) B*(A) , (6.1) 
(

A(A) B(A) 0) 
o C*(A) A *(A) 

where B(A) is a row with (N - 2) components 
(Bt, ... ,BN- 2

), C(A) is a column, and D(A) is an 
(N-2)x(N-2) matrix, and A*(A)= -A(A), 
Bi(A) = -B*N+I-i(A),C(A)= -C*N+!-i(A).The 

useful commutation relations in block form follow from 
(3.2) and (3.7): 

[A(A),B(,u)] = -/(A-,u)B(,u) +g(A-,u)B(A), 
(6.2) 

[Da (A), Bb (,u)] 

= - g(A - ,u)Ba (A) + B ~(A)g(A -,u) 

+ Bb (,u)Sab (A - ,u), 

[T(A),B(,u)] =2g(A-,u)A(,u)B(A) 

+ B(,u)Tro(s(A - ,u)D(A) ®I) 

- 2/(A - ,u)A(A)B(,u) 

- 2g(A - ,u)B(A)D(,u). 

(6.3 ) 

(6.4 ) 

Here again S(A) is an (N - 2) 2 X (N - 2) 2 matrix with the 
samestructureasr(A) in (4.6),andg(A) isanN X (N - 2)2 
matrix with elements g(A );,jk = g(A) Oil Ojk" 

Theorem 1 holds also in this case but with the following 
obvious modifications: m7; i = 1, . , ., M, k = 1, , .. , [N /2] 
stands now for the highest weights of irreducibile represen­
tations of o(N), HE, is now the Hamiltonian associated with 
chain of o(N - 2) spins, and we must multiply the first two 
terms in rhs of (5.9) with a factor 2 [see (6.4)]. Also the 
equations for the eigenvalues (5.11) and (5.12) hold with 
these changes, 

In the case g = sp (N) we write (in analogy with Ref. 9) 
the L(A) matrix in form 

A (A(A) B(A») 
L( ) = C(A) D(A)' ( 6.5) 

where A, B, C, Dare nXn (n = N /2) matrices and 

Aij = D/i" Bij = - Bj'i" Cij = - C/i" 

i,j = 1, . , ., n, i' = n + 1 - i. 

We shall use the commutation relations in block form 

[Aa(A),Bb(,u)] 

- Sab (A - ,u)Bb (,u) + Ba (A)U ab (A -,u) 

+ Bb (,u)qab (A - u), (6.6) 
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[Da (A), Bb (,u)] 

= - qab (A - ,u)Bb (,u) - uab (A - ,u)Ba (A) 

+ Bb (,u)sab (A - ,u), 

[TCA),B(,u)] 

=B(,u)Tro(q(A -,u)(A(A) ®I) 

+ SeA - ,u)(D(A) ®I) 

+ A(,u)Tro(u(A - ,u)(B(A) ®I)) 

- Tro(s(A - ,u)(A(A) ®I) 

+ q(A - ,u)(D(A) ®I)B(,u) 

( 6.7) 

- Tro(u(A - ,u)(B(A) ®I)D(,u). (6.8) 

Here S(A) is an n2 X n2 matrix with the same structure as the 
r matrix (4.5) for the gl (n) case, q(A) is an n2 X n2 matrix, 

n n 

q(A) = - /(A) I e aa ® ea'a' - g(A) I e a (3 ® e a '(3' 

a< I a<(3 

n 

- g(A) I e a (3 ® e a '(3' , (6.9) 
a>(3 

and U(A) is an n2 xn2 matrix U(A)ijkl =g(A) 

(Oi+jn+!Ok+ln+! -OikOjl)' Now, let the spaces Vi 
i = 1, .. "M be the representation spaces for sp (2n) with 
the highest weights (m), ... , mn. We denote ~C&'" as 
the subspace of quantum space that is invariant under the 
action of Aij (A) and Dij (A) such that 

Cij(A)V=O, 'r;jv~. 

It is not hard to see that &",0 = ® ~ I Vi' where Vi are the 
representation spaces for gl (n) with the highest weights 
(m), ... , m7), We denoteAij (A) resp. Dij (A) as the reduc­
tions of Aij (A) and Dij (A) to &"'0' Further we take 

F B i j (1) B ikjk ( 1 )F(I) == I I At .•. /L.k i.-"ikJ.""j,.' 

k k 

F(J)~ ® V? ® V~, (6.10) 
i=1 i'= 1 

k k 

I(A) = I qOi(A - Ai) +A(A) - I s~: (A - Ai)' 
i= 1 i'= 1 

(6,11) 
~ k _ 

L(A) = ISOi(A-Ai) +D(A) 
i=1 

k 

_ '" Tj' (A _ A ) 
~ quI' I , 

(6,12 ) 
1'=1 

where Tr stands for transposition in V~ - i'th representa­
tion space for fundamental representation for gl (n) and de­
note 

T(A) =! Tro I 2(A), Hi = res T(A), 
A= Cj 

HAk = res T(A)' 
A=Ak 

(6.13 ) 

T(A) =! Tro L 2(A), Hi = res T(A)' 
A= Ci 

Branislav Jureo 1292 



                                                                                                                                    

Now using the commutation relations (6.6 )-( 6.8) and 
notations introduced above, we can prove the following 
theorem [for analogy with Sp(2n)-invariant "magnets" see 
the Appendix of Ref. 9]. 

Theorem 2: The state (6.10) is an eigenstate of Hi' 
(4.7), with eigenvalue hi iff FIJ) is an eigenstate of Hi and'li; 
with eigenvalues hi resp. hi, hi = hi + hi and the numbers 
Ak satisfy the following. conditions: 

h, + h A = 0, 'rj k, ( 6.14 ) A. , 
where h, ,h A are eigenvalues of H). resp. HA . 

AJ.. J.. k J... 

Now using automorphisms of glen), 

we can see that all Hamiltonians in Theorem 2 are of the 
glen) type and can be diagonalized according to Sec. V. We 
shall not write out explicit results because they are cumber­
some and their structure is obvious. 

In this paper we are not dealing with such problems as 
completeness of obtained eigenstates, their norms, or calcu­
lation of some correlation functions [for the su (2) case see 
Refs. 4and 5]. Further we note that in cases when the (semi­
classical) solutions R (A., 'TO of QYBE, such that 
r(A) = lim

7l
_ o (d / d1]) R (A, 1]), is known,6,9. II all results of 

interest can be obtained in this limit from the quantum in­
verse scattering method.5

,12 
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We do not give here any example of a system in the 
described class, because we shall devote forthcoming papers 
to such examples of physical interest [four-boson interac­
tions, three-boson interactions (also multiple), second har­
monics generation, the Dicke model] . 
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The Lanczos spin tensor [C. Lanczos, Rev. Mod. Phys. 34, 379 (1962)] is obtained for 
arbitrary space-times type III, N, or o. 

I. INTRODUCTION 

In his paper of 1962, Lanczos 1 shows that for any Rie­
mannian four-geometry, there always exists a third-order 
tensor Kabe which functions as a potential or generator of the 
Weyl tensor Ci,jkr in the following way: 

Cpqjb = Kpqj;b - KpqbJ + Kjbp;q - Kjbq;p 

+ HgPb (Kjq + K qj ) - gpj (Kqb + K bq ) 

+ gqj (Kpb + K bq ) - gqb (Kpj + K jp ) ] (la) 

where 

Kpb=Kpeb;e' (lb) 

Kabe is called the Lanczos spin tensor and it possesses 
the following properties: 

Kabe = - K bae , K z bb = 0, 

Kabe + Kbea + Kcab = O. (lc) 

For a given geometry, the construction of K ij, is equiva-
lent to solving Eqs. (la) with Eqs. (lc) as constraints. This 
is not simple in general; nevertheless in this paper Kabe is 
constructed satisfying Eqs. (la) and (lc) for arbitrary type 
0, N, or III space-times. 

11_ WEYL-LANCZOS EQUATIONS 

For simplicity, we will use the notation and conventions 
attributable to Kramer et al. 2 with respect to Newman-Pen­
roseformalism3 (NP). 

The symmetries in (lc) imply that Kabe has 16 real inde­
pendent components; that is, eight complex projections on 
the NP tetrad, 

0 0 = K(I)(4)(4) ' 0 4 = K(I)(4)(1)' 

0 1 = K(I)(4)(2)J Os = K(I)(4)(3)J 

O2 = K(3)(2)(4) ' 0 6 = K(3)(2)(I) ' 

0 3 = K(3)(2)(2) ' 0 7 = K(3)(2)(3) ' 

where 

K(a)(b)(e) =Kpq,Z(a) PZ(b) qZ(e) " 

with the null tetrad, 

(Z(a)') = (mr,m',l',n'). 

(2a) 

(2b) 

(2c) 

Hence, once (2a) are known, the Lanczos potential is 
obtained from 

(3a) 

a) Area de Fisica, CBI, Universidad Autonoma Metropolitana-Azcapot­
zalco, Av. Sn. Pablo 180, Mexico 02200, D. F., Mexico. 

with a bar meaning complex conjugation such that 

Tabe = OoUable + 0 1 (Mable - Uabme ) 

where 

+ 02( Vable - Mabmc) - 03 V ab m e 

- 04Uabme + Os( Uabnc - Mabme) 

- 06(Mab n e - Vabm e ) + 07 V ab n c> 

Vab = namb - nbma' 

U ab = -Iamb + Ibm a , 

Mab = mamb - mbma - na1b + nb1a' 

(3b) 

(3c) 

Therefore, projecting (la) on (2c), we obtain the fol­
lowing relations. 

Weyl-Lanczos equations: 

1/10 = 2[ - <500 + D04 + (ll' + 3/3 -17-)00 - 30'01 

+ ( - 3€ + E-p)04 + 3XOs] , 

2"'1 = - aOo - 3<501 + 804 + 3DOs 

+ (3r+ r+ 3jl-ji)00 + 3(ll' +/3-17--1')0 1 

- 60'02 + ( - 3a + (J - 31T - 7) 0 4 

+ 3 ( - € + E + P - p)Os + 6X0 6' 

1/12= -aOI-<502+80s+D06+VOO 

+ (2jl- ji + r + y)OI + (ll' - /3 -17- - 21')02 

- a03 - ..1.04 + ( - a + 7J - 21T - 7)Os 

+ (€ + E - ,0 + 2p )06 + X07' 

2"'3 = - 3a02 - <503 + 3806 + D07 

+ 3( -ji +jl + r- y)02 + 6vO l 

+ (ll' - 3/3 - 31' -17-)03 

- MOs + 3(a + 7J - 7 - 1T)06 

+ (3€ + E - ,0 + 3p) 0 7 , 

1/14=2[ -a03+807 +3v02 + (-ji- 3r+y)03 

- 3..1.06 + (3a + 7J - 7)07], (4) 

where the Or' r = 0, ... ,7 are related to the NP quantities 1/1a, 
a = 0, ... ,4 and with the 12 spin coefficients X, a, p, .... 

It is difficult to solve Eqs. (4) directly, but comparison 
of ( 4) with the Np2 equations suggests a solution for arbi­
trary, N, III, or 0, Petrov type. 

(a) type 0 or N: We know that (2c) could be chosen such 
that "'a = 0, a~4: 1/14~0 if type Nand "'4 = ° if type o. 
Therefore a solution of (4) is 
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fio = - X 12, fi4 = - 0/2, 

fi l = -pI6, fis = - r/6, 

fi2 = 1T16, fi6 = f-l16, 

fi3 =,1/2, fi7 = v/2. 

(5) 

(b) type 0 or IlL' In this case, there always exists a null 
tetrad such that tP a = 0, a # 3: tP3 # ° if type III and tP3 = 0, 
if type o. By comparison of ( 4) with the eighteen Np2 equa­
tions, it is simple to obtain the solution 

fio = - X, fi4 = - 0", 

fi l = -pI3, fis = - r13, 

fi2 = 1T13, fi6 = f-l13, 

fi3 = A, fi7 =:= v. 

(6) 

Note that (5) and (6) differ by a factor of 2. To verify that 
(5) and (6) are solutions of ( 4 ), it is helpful to use the 18 
well-known Np2 equations. 

In the case of type 0, we may select fir = 0, 
r = 0, ... ,7, which corresponds to the trivial solution; (5) and 
(6) give us a nontrivial solution of (Ia) for this Petrov type. 
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In literature about Lanczos potential, it is common to 
find the idea that the construction of Kabc involves a great 
deal of work. Nevertheless in this paper we show that NP 
allows one to express, in a simple way, the Lanczos generator 
for arbitrary, type N, III, or 0 space-times. We are currently 
seeking the existence of similar solutions to (5) and (6) for 
arbitrary space-time types I, II, or D. However, to the pres­
ent, we have not found those solutions. 

In the general case (arbitrary Petrov type), we conjec­
ture that the fir will be linear combinations of the spin coeffi­
cients (with respect to some canonical tetrad). 

Ie. Lanczos, Rev. Mod. Phys. 34, 379 (1962). 
20. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of 
the Einstein Field Equations (Cambridge V.P., Cambridge, 1980), Eqs. 
(7.28)-(7.45). 

'E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
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Zeeman's lemma states that transformations of Minkowski space-time that preserve timelike 
causality also preserve lightlike causality. The significance of this lemma is that it makes 
possible an explicit determination of the "causal automorphisms" of Minkowski space-time 
without recourse to regularity assumptions: they must be orthochronous Lorentz 
transformations. Here Zeeman's lemma for Robertson-Walker space-times is proved, a result 
again tantamount to obtaining the causal automorphisms of these space-times explicitly. 

I. INTRODUCTION 

In general terms, one event in space-time can cause an­
other whenever some influence (i.e., a particle of some sort) 
can pass between them. Since the world line of this particle 
must be a nonspacelike curve, one event can cause another 
whenever some future-directed nonspacelike curve contains 
both events in the correct order. If the curve is timelike (i.e., 
if the particle is material) the causality is said to be timelike 
and if the curve is null, the causality is said to be lightlike. In 
the following, we also distinguish between passive causality 
(when the nonspacelike curve is a geodesic) and ordinary 
causality as usually defined (when it need not be a geodesic). 

Zeeman's lemma I states that transformations of Min­
kowski space-time that preserve passive timelike causality 
preserve passive lightlike causality. [Note that although 
Zeeman's proof implicity uses geodesics instead of more gen­
eral nonspacelike curves, in Minkowski space-time, there is 
in fact no distinction between passive and ordinary causality. 
For other space-times, there is generally such a distinction: 
in anti-de Sitter space-time, for example (as illustrated in 
Fig. 20 of Ref. 2), the events reachable from a typical event p 
via timelike geodesics clearly form a proper subset of those 
reachable via more general timelike curves.] The signifi­
cance of Zeeman's lemma is that it makes it possible to deter­
mine the "causal automorphisms" (i.e., the causality-pre­
serving transformations) of Minkowski space-time 
explicitly, without assuming them to be in any way regular 
(linear, continuous, etc.). Since transformations preserving 
passive lightlike causality trivially preserve pairs of events 
joined by light signals, the problem reduces to showing that 
transformations that preserve such pairs of points are essen­
tially Lorentz transformations. (This is the substance of Ref. 
1; however, the same conclusion follows from earlier, less 
well-known theorems of Alexandrov. 3 See also the bibliogra­
phies of Refs. 4 and 5 for related theorems.) 

In the following, we prove Zeeman's lemma for passive 
causality in Robertson-Walker space-times. We begin in 
Sec. II by describing these space-times in terms of certain 
scalar products and continue in Sec. III by finding their non­
spacelike geodesics explicitly. In Sec. IV we derive algebraic 
conditions for passive causality and in Sec. V we use these 
conditions to prove the lemma. We note that since the trans­
formations of Robertson-Walker space-times preserving 
light signals were derived explicitly in Ref. 4 (the results are 

too lengthy to state here), this proof of Zeeman's lemma is 
tantamount to a derivation of explicit forms for the passive 
causal automorphisms of Robertson-Walker space-times. 

II. ROBERTSON-WALKER SPACE·TIMES 

Robertson-Walker space-times are those with exact 
spherical spatial symmetry about every point (see Ref. 2, 
Sec. 5.3 for a more detailed description). For a suitable coor­
dinate system, the metric of any such space takes the local 
form 

ds2 = - dp2 + h(f)2 dO' 2, 

where p is a timelike coordinate; dO' 2 is a three-dimensional 
spatial metric of constant zero, negative, or positive curva­
ture; and h = h(p) is some appropriate "radius" function. 

We require a more formal and global description of 
Robertson-Walker space-times. For some open interval lof 
R (I may be infinite or semi-infinite), we assume that the 
function h:1 --+ R is everywhere positive and "nice," i.e., such 
that all limits, derivatives, and integrals required below ex­
ist. As described below, the spatial metric dO' 2 will be ex­
pressed in terms of a suitable scalar product. 

Consider first the case of constant zero spatial curvature 
and let ( , ) be the usual dot product on lR,4 

Definition 2.1: The Robertson-Walker space-time of 
constant zero spatial curvature corresponding to the func­
tion h:1 --+ R is the set 

RO(h): = {(p,r) IPEI, rER3}, 

together with the metric 

ds2: = - dp2 + h(p)2(dr,dr). 

For constant positive spatial curvature, let ( , ) denote 
the usual dot product on R4. We allow r to range over the 
sphere (r,r) = 1 in R4. 

Definition 2.2: The Robertson-Walker space-time of 
constant positive curvature corresponding to the function 
h:I-R is the set 

R+(h) = {(p,r)lpEI, rER4,(r,r) = 1}, 

together with the metric 

ds2: = - dp2 + h(p)2(dr,dr). 

[By parametrizing the sphere as 
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r = (cos X' sin X cos 0, sin X sin 0 cos </1, sin X sin 0 sin </1), 

we obtain the more familiar form (dr,dr) = dX2 
+ sinz X(d0 2 + sin2 0 d</12).] 

For constant negative spatial curvature, define the inde­
finite scalar product ( , ) on JR4 by 

(rJ,rz): = - wJw2 + x Jx2 + YJY2 + ZJZ2' 

for all r J: = (wJ,xJ'YJ,zJ) and r2: = (W2,X2,Yz,Z2)EJR4• The 
equation (r,r) = - 1 represents a hyperboloid of two sheets 
in JR4. By fixing the sign of the w coordinate, we let r range 
over one sheet of this hyperboloid. 

Definition 2.3: The Robertson-Walker space-time of 
constant negative spatial curvature corresponding to the 
function h:1 -+ JR is the set 

R-(h): = {(p,r)lpEI, rEJR\(r,r) = -1, w>O}, 

together with the metric 

ds2: = - dp2 + h(p)2(dr,dr). 

[The more conventional form for da 2 can be obtained by 
parametrizing the sheet of the hyperboloid as 

r = (cosh X, sinh X, cos (), sinh X sin 0 cos </1, 

sinh X sin 0 sin </1 ) ; 

we then calculate that (dr,dr) = dXz + sinhz X(d0 2 

+ sin2 0 d</12). ] 
We note some useful properties ofthis indefinite scalar 

product. 
(i) For distinct a and b in JR4 with positive w coordinates 

satisfying (a,a) = (b,b) = - 1, we have (a,b) < - 1. 
(ii) For any a, e, and d in JR4 with at least one of (a,a), 

(e,e), or (d,d) negative, 

(a,a) (a,e) (a,d) 

(e,a) (e,e) (e,d).;;; O. 

(d,a) (d,e) (d,d) 

Before continuing on to our discussion of geodesics and 
passive causality, we look at a useful modification of the 
timelike coordinate p. Fix an arbitrary number VEl. 

Definition 2.4: For any scalar c;;;.O and any pEl, we de­
fine 

fP dA 
Pc: = Jv h(A){1 + c[h(A) f}J/2 . 

We also define 10: = {PoIPEI}. 
The following theorem lists the properties of Pc' 
Theorem 2.1: For any p, a,/3EI with/3> a and any e>O, 

(i) /3c >ac; (ii) if e#O, then PO>Pc; (iii) if c#O, then 
/30 - aD> /3 c - a c; and (iv) if f-t is any scalar with 
o <f-t </30 - aD, then there exists a c> 0 with /3c - ac = f-t. 

Proof: Statements (i) and (ii) are obvious from the de­
finition of Pc and elementary properties of integrals. For 
(iii) and (iv), define the function Fa,d 0,00 ) -+ JR by 

f/3 dA 
Fa/3(x): =/3x -ax = Ja h(A){1 +X[h(A)f}I/2' 

Now Fa/3 is a strictly decreasing function of x and 
Fa/3 (0) = /30 - aD, from which statement (iii) follows. Fur­
thermore, Fa/3 is continuous (since h is "nice") and 
limx _=Fa/3(x) =0, so for any f-t with O<ft 
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<Po - aD = FafJ (0), we have statement (iv): Fa/3 (e) = f-t 
for some c > O. • 

III. THE NONSPACELIKE GEODESICS OF ROBERTSON­
WALKER SPACE-TIMES 

Let R denote whichever of the Robertson-Walker 
space-times. RO (h), R - (h), or R + (h) is under discussion 
and fix the scalar Eto be 0, - 1, or + 1, respectively. Denote 
derivatives with respect to arc length s by dots and deriva­
tives with respect to p by primes. Set h: = h (p). 

Theorem 3.1: Geodesics in R satisfy the following equa­
tions: 

so 

p + hh '(t,t) = 0, [h 2r)' = - Eh 2(t,t)r. 

Proof: Use the standard variational argument: 

2 ds 8(ds) = - 2 dp 8(dp) + 2hh' 8p(dr,dr) 

+ 2h 2(dr,8(dr»), 

0= f 8(ds) = f p(8p)' ds 

+ f hh '(t,r')8p ds + f h 2(t,(8r)' Ids. 

Integrate the first and third integrals by parts and simplify: 

0= f ([p + hh'(t,t) ]8p + ([h 2t)' ,8r)}ds, 

true for all 8pEJR and all allowable 8r. 
IfR = RO(h), there is no restriction on r, so all DrEJR3 

are allowable. Then for 8r = 0, we obtain p + hh ' (t,t) = 0 
(the first equation) and for 8p = 0, we obtain 
([h 2t)' ,8r) = 0 for all 8rEJR3

, which implies that 
[h 2t] . = 0 = Eh 2(t,t), the second equation. 

If R = R ± (h), then since (r,r) = E, only those 8rEJR4 

with (8r,r) = 0 are allowable. For 8r = 0, we again obtain 
the first equation. For8p = 0, we have that [h 2t]· isorthog­
onal to all that are orthogonal to r, so [h 2t] . = Ar for some 
scalar A. Then Ar = h 2r + 2hht, from which 
A(r,r) = (h 2r + 2hhr,r), i.e., EA = h 2(r,r) + 2hh(t,r). 
However, (r,r) = E implies that (t,r) = 0 and (t,t) 
+ (t,t) = 0, so A = - Eh 2(t,t) and [h 2t]· 
= - Eh 2(t,t)r. • 

We now use these geodesic equations with appropriate 
initial conditions to find the nonspacelike geodesics of R. 
Define 8 to be + 1 or 0 whenever the geodesic under discus­
sion is timelike or null, respectively. 

Theorem 3.2: Assume that the following initial condi­
tions for the geodesic equations of Theorem 3.1 hold ats = 0: 

p = a, p = /3, r = a, t = 'lib, 

where 

(b,b) = 1, '1';;;'0, - /3 2 + [heal ]2'1'2 = - 8. 

IfR#Ro(h), then 

(a,a) = E, (a,b) = O. 

Then (taking p;;;'O) the nonspacelike geodesics in R are as 
follows. 
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If I{I = 0, then r = a, p = s + a, and the geodesic is 
timelike. 

If I{I > 0, then for c: = 01{l-2[h(a)] -4;;;'0, the geodesic 
takes the form 

for R=Ro(h) r(p)=(Pe-ae)b+a 

for R=R-(h), rep) = cosh (Pc -ac)a 

+ sinh(Pe - ac)b, 

for R = R+ (h), rep) = cos(Pc - ac)a 

+ sin (Pc - ac)b 

and is timelike if and only if c =I- o. 
Proof: Expand the second geodesic equation and multi­

ply by 2h 2: 

2h 4r + 4h 3M = - 2ch 3(r,r)r. 

Take the scalar product with r and rearrange; then 

[h 4(r,r)]' = - 2€h 3(r,r) (r,r) = 0, 

since either € = 0 or (r,r) = O. Use the initial conditions to 
obtain that (r,r) = A 2h -4 for A: = l{I[h(a) ]2;;;'0, from 
which the two geodesic equations become 

p + A 2h -3h I = 0 (la) 

and 

[h 2r]' = - €A 2h -2r . (lb) 

If I{I = 0, then A = 0; thus P = 0, which implies that 
P = s + a, and (r,r) = 0, which implies that r = 0 and thus 
r=a. 

Assume then that I{I > O. Multiply Eq. (la) by 2p and 
rearrange: 

(p2)' = A 2(h -2) '. 

Then use the initial conditions to obtain 

p = {A 2h -2 + 0)1/2 =Ah -1{1 + ch 2)1/2. 

Define ¢ =Pc - a e • Now p; = h -I {I + ch 2}-112, so 
¢ = Pc = p;p = Ah -2. Use the appropriate chain rules to 
calculate that 

d
2
r = (¢r -:- ¢r) = A -2[h 2r]' h Z 

d¢i t/J3 ' 
so from (lb), 

dZr =A-z(_€A 2h-2r)h z = -cr. 
dt/J2 

The solutions to this equation for the various values of € give 
the required curves. • 

IV. ALGEBRAIC CONDITIONS FOR PASSIVE 
CAUSALITY 

As in Minkowski space-time, passive causality in R is 
defined in terms of nonspacelike geodesics. In the following 
definition, passive timelike causality is denoted by the sym­
bol -<E and passive lightlike causality by the symbol -<E' • 

Definition 4.1: For any two events (a,a) and ({3,b) in R, 
(i) (a,a) -<E ({3,b) if and only if there exists a timelike 

geodesic joining (a,a) and ({3, b) and a < {3. 
(ii) (a,a) -<E • ({3,b) if and only if there exists a null geo­

desic joining (a,a) and ({3,b) and a <{3. 
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The next two theorems give more workable character­
izations of passive causality. 

Theorem 4.1: For any two distinct points (y,c) and 
(o,d) in R, (y,c) -<E (o,d) if and only if 0o> Yo and 

(00 - Yo)Z > (d - c,d - c), 

cosh(oo - Yo) > - (d,c), 

cos(oo - Yo) < (d,c) 

or 0o-Yo>1T. 

Proof: (i) Assume that 0o > Yo and that the appropriate 
condition holds; then 0 > Y [Theorem 2.1 (i)]. If c = d, then 
the curve r = c, p = s + Y is a timelike geodesic joining the 
two points, so (y,c) < (o,d). If c =I- d, then 

{

O< (d - c,d - C)I12<OO - Yo, 

0< cosh- I{ - (d,c)} <00 - Yo' 

O<cos-I(d,c) <00 - Yo' 

From Theorem 2.1 (iv) there then exists a positive c such 
that . 

{

Cd - c,d - c) I/Z, 

OC - Yc = cosh- I{ - (d,c)}, 

cos- I (d,c). 

Define 

{

(oc -Yc)-I(d-c), 

b: = - coth(oc - Yc)c + csch(oc - Ye )d, 

- cot(0c - Yc)c + csc(oc - Yc )d. 

Then it is easily checked that (b,b) = 1, (b,c) = 0 if 
R=l-Ro(h), and 

{

rep) = (Pc -Yc)b+c, 

r(p) = cosh (Pc - Yc)c + sinh(pc - Yc )b, 

rep) = cos (Pc - Ye)c + sin(pc - Yc)b 

is a timelike geodesic joining the two points. Thus 
(y,c) -<E (o,d). 

(ii) Assume that (y,c) -<E (o,d); then 00 > Yo [Theorem 
2.1 (i)] and there exists a timelike geodesic joining the two 
points. If this geodesic has the form r = a, p = s + a, then 
the appropriate condition holds trivially. Assume otherwise; 
then the geodesic has the form given above for appropriate c 
and h. From r( Y) = c and reo) = d follows 

{

(d-C,d-C) = (oc -Yc)z, 

- (d - c) = cosh(oc - Ye), 

(d,c) = cos(oc - Ye), 

which, since oe - Yc < 0o - Yo [Theorem 2.1 (iii)], implies 
the required relation. • 

Theorem 4.2: For any two points (y,c) and (o,d) in R, 
(y,c) -<E • (o,d) if and only if 0o> Yo and 

{

for R = RO(h), (00 - YO)2 = (d - c,d - c), 

for R=R-(h), cosh(oo-Yo)= -(d,c), 

for R = R+(h), cos(oo - Yo) = (d,c). 

Proof: The proof of Theorem 4.2 is analogous to that of 
Theorem 4.1 with c = 0 and will thus be omitted. • 
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v. PROOF OF ZEEMAN'S LEMMA 

The crux of the proof is to characterize passive lightlike 
causality ( <E • ) in terms of passive timelike causality ( <E • ). 

Theorem 5.1: For distinct (y,c) and (8,d) in R, 
(y,c) <E • (8,d) [and 80 - Yo<1TifR = R+ (h) J ifand only if 
(y,c) 1: (8,d) and, for all (a,a) in R, (a,a) <E (y,c) implies 
that (a,a) <E (8,d). 

Proof for the case R = RO(h): (i) Assume that 
(y,c) <E '(8,d); then (00 - 1'0)2 = (d - c,d - c) [so 
(y,c) -+ (o,d)] and 80> Yo· Suppose that (a,a) <E (y,c) for 
some (a,a) in R; then ao<yo and (yo-ao)2 
> (a - c,a - c). Then 

(Yo - a o)2(00 - 1'0)2> (a - c,a - c) (d - c,d - c) 

>(a - c,d - C)2 

using the Cauchy-Schwarz inequality. Taking positive 
square roots, we have 

(Yo - ao)(oo - Yo) > I (a - c,d - c) I>(a - c,d - c). 

Now d - a = (d - c) - (a - c), so 

(d-a,d-a) 

= (d - c,d - c) - 2 (d - c,a - c) + (a - c,a - c) 

< (00 - 1'0)2 - 2(1'0 - ao)(oo - Yo) + (Yo - a o)2 

= (00 - a o)2. 

Thus since 00 > Yo> a o, we have that (a,a) <E (o,d). 
(ii) Assume that (y,c) -+ (8,d) and that for all events 

(a,a) inR, (a,a) <E (y,c) implies (a,a) <E (o,d). We also as­
sume that (y,c) <E' (o,d) and derive a contradiction. The 
two subcases 1'0<00 and Yo> 80 will be treated separately. 

Suppose that 1'0<80, Then [since (y,c)::;6(o,d), (y,c) 
-+ (o,d), and (y,c) <E' (o,d)], (80 - 1'0)2 < (c - d,c - d), 
so 00 - (c - d,c - d) 1/2 <Yo. Choose a number A in 10 such 
that 80 - (c - d,c - d) 1/2 <A < Yo; then there exists an aEI 
with ao=A. Define a:=c; then (yo-ao)2>0 
= (c - a,c - a), so (a,a) <E (y,c). However, 

0<80 - 1'0<80 - a o < (c - d,c - d) 112, from which 
(00 - a o)2 < (a - d,a - d). This implies the contradiction 
(a,a) -+ (o,d). 

Suppose that Yo> 00' Choose any A in 10 with 
Yo> A > 80; then A = a o for some a in I. Define a: = c; then 
since a o < Yo and (Yo - ao)2 > 0 = (a - c,a - c), we obtain 
(a,a) <E (y,c). However, ao>oo, so we again have the con­
tradiction that (a,a) IE (o,d). 

We have thus a contradiction in both subcases, so 
(y,c) <E (8,d), as required. 

Proof for the case H = H-(h): Define 0;>0 by 
cosh 0;: = - (c,d). 

(i) Assume that (y,c) <E ·(o,d). Then 1'0<80 and 
cosh(oo - Yo) = - (c,d), so 0; = 00 - Yo' Suppose that for 
some (a,a) in H, (a,a) -<E (y,c), but (a,a) 1 (8,d). Define 
O,¢>O by cosh 0: = - (a,c), cosh ¢: = - (a,d). 

From (a,a) <E (y,c) follows that a o < Yo and cosh ( Yo 
- a o) > (a,c), so cosh ( Yo - a o) > cosh 0, from which Yo 
- a o> O. Since 80 > Yo> a o, it follows from (a,a) t (o,d) 
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that cosh (00 - a o)< - (a,d) = cosh ¢, so 00 - ao<¢' 
Thus 0 + 0; = 0 + (00 - Yo) <00 - a o<¢' so 
cosh(O + 0;) < cosh ¢. 

Now 

(a,a) (a,c) (a,d) 

o > (c,a) (c,c) (c,d) 
(d,a) (d,c) (d,d) 

-1 - cosh 0 -cosh¢ 
- cosh 0 -1 - cosh 0; 

- cosh ¢ - cosh 0; -1 

This can be written as 

{cosh(O + 0;) - cosh ¢}{cosh(O - 0;) - cosh ¢}<O, 

so since the first factor has been proven negative, 
cosh(O-o;»cosh¢, from which IO-o;l>¢. However, 
o + 0; < ¢, soO + 0; < 10 - 0;1, which implies that either Oor 
0; is negative, a contradiction. Thus no (a,a) with 
(a,a) <E (y,c) and (a,a) -+ (o,d) exists. 

(ii) Assume that (1', c) 1: (o,d) and that for all events 
(a,a) in H, (a,a) <E (y,c) implies (a,a) <E (8,d). We com­
pare the values of 0; and 00 - Yo' 

If 00 - Yo> 0;>0, then cosh (00 - Yo) > cosh 0; 

= - (c,d), so we have the contradiction that (y,c) 
<E(8,d). 

If 00 - Yo < 0;, then choose a number AE10 with 
00 - 0; <A < Yo. Since AE1o, then ..1,= a o for some aEI. De­
fine a: = c; then since ao < 00 and cosh( Yo - a o) > 1 
= - (a,a) = - (a,c), we have (a,a) <E (Y,c). However, 

80 -ao<0;, so cosh(oo-ao) <coshu> = -(c,d) 
= - (a,d) and we have the contradiction that (a,a) 
~ (o,d). 

It follows that 00 - Yo = 0;. If 0; = 0, then l' = 0 and 
(c,d) = - 1, so c = d and (y,c) = (o,d), another contra­
diction. Thus 0;>0, so 00>1'0 and cosh(oo-yo) 
= cosh 0; = - (c,d), i.e., (y,c) -<E' (o,d). 

Prooffor the case H = R +(h): The prooffor this case is 
analogous to that for the previous case and will thus be omit­
ted (See Ref. 5, Lemma 3.2 for an essentially identical 
proof.) • 

We now prove Zeeman's lemma. Letf R--H be a bijec­
tive function which preserves passive timelike causality, i.e., 
such that for all (a,a) and ({3,b) in H, (a,a) <E ({3,b) if and 
only iff (a,a) <Ef ({3,h). IfR::;6R+ (h), it follows immediate­
ly from Theorem 5.1 that for all (a,a) and ({3,b) in R, 
(a,a) <E • ({3,b) if and only iff(a,a) <E 'f({3,b), i.e.,fpre­
serves passive lightlike causality. 

If H = R + (h), the above argument works only when 
{3 - a<1T. The following theorem will enable us to extend 
the theorem to more distant points. 

Theorem 5.2: If (a,a), ({3,b), and (y,c) are points in 
R+(h) with 

(a,a) -<E • ({3, b), ({3, b) <E • (y,c), (a,a) <E • (y,c), 

then there exists a single null geodesic containing all three 
points. 

Proof: We have that (a,a) = (b,b) = (c,c) = 1, 
cos({3o-ao) = (b,a), cos(yo-{3o) = (c,b), and 
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cos(Yo - ao) = (c,a), from which we calculate that the 
Gramian determinant 

(a,a) 
(b,a) 
(c,a) 

(a,b) 
(b,b) 
(c,b) 

(a,c) 
(b,c) 
(c,c) 

vanishes and so a, b, and c are linearly dependent. Then there 
exists a unit vector dER4 orthogonal to a and scalars e and t/J 
such that b = cos ea + sin e d and c = cos t/Ja + sin t/Jd. 
From the above values for (a,a), (a,b), etc., we calculate 
that e and t/J can be chosen to be,Bo - a o and Yo - ao, respec­
tively (it may be necessary to replace d by - d), so all three 
points lie on the null geodesic with the equation r(p) 

= cos (Po - ao)a + sin (Po - ao)d. • 
Now assume that (a,a) and (,B,b) are arbitrary points 

in R+(h) with (a,a) "'" . (,B,b). Choose consecutive points 
(a,a) = (Yo,co), (Yl,C1), ... ,(Yn,cn ) = (,B,b) on the null ge­
odesic joining them such that for all i = 1,2, ... ,n, 
Yi - Y,-l <! 1T. Then (Yi-pCi - 1 ) "",' (Yi,Ci ) for all 
i=1,2, ... ,n and (Yi-l'Ci - 1) """(Yi+l'Ci + 1 ) for all 
i = 1,2, ... ,n - 1. By Theorem 5.1, since Yi - Yi-l <!1T<1T, 
! (Yi _ I 'C i _ I) "'" . ! (Yi'C i ) for all i = 1,2, ... ,n and since 
Yi - I - Yi + I < 1T, ! (Yi - I 'C i _ I) "",.! (Yi + I 'C i + I) for all 
i = 1,2, ... ,n - 1. Then from Theorem 5.2 any three consecu-
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tive! (Yi ,c; )'s lie on a common null geodesic. Furthermore, 
since the p coordinates of any two consecutive! (Yi 'Ci )'s 
differ by less than 1T (this condition is preserved from 
Theorem 5.1), two consecutive! (Yi ,ci)'s lie on at most one 
null geodesic. It follows that all! (Yi 'Ci )'s lie on the same 

null geodesic, so since thep coordinate of! (a,a) =! (Yo,co) 
is less than that of! (Yn 'Cn ) =! (,B,b),J (a,a) "'" . ! (,B,b). 

This concludes our proof of Zeeman's lemma for Rob­
ertson-Walker space-times. 
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Separate differential and integral transformations are introduced for the individual radial and 
angular equations governing the (infinitesimally) gauge invariant Newman-Penrose quantities 
which represent massless perturbations of the Kerr black hole. Using these new 
transformations it is shown, without need for numerical investigation or reference to the 
analytic behavior of the separation constant, that no unstable mode perturbations exist for any 
physical value of the spin of massless fields on the rotating black hole background. 

I. INTRODUCTION 

In its most general form, which has been studied at great 
length over the last 30 years, the problem of black hole stabil­
ity arises as an initial value problem for the stability oflinear­
ized gravitational perturbations on a black hole space-time 
background. Frequently, the methods used are also applica­
ble to other massless fields of lower spin, so that often a 
general analysis is able to provide, simultaneously, results 
for all perturbations of physical or theoretical interest. The 
most recent results can be categorized I as 0) a transition 
away from mode analysis to obtain pointwise bounds for 
perturbation of the Schwarzschild space-time; (ii) a demon­
stration of mode stability for general massless perturbations 
of the Kerr black hole; and (iii) a specification of the criteria 
for stability in the boundary value problem for spherical geo­
metries, which arises in the comparatively new context of 
gravitational thermodynamics. Although result (iii) will 
not be considered further here, it is perhaps useful to note 
that in the thermodynamic regime dominated by black hole 
geometries, the condition for gravitational stability exactly 
ensures that the various criteria are satisfied for the indepen­
dently defined question of thermodynamical stability? 

With regard to the initial value problem for perturba­
tions on spherical black hole space-times, whether eternal or 
forming from collapse, the best available results beyond 
mode stability3.4 are found in the recent work of Kay and 
Wald.5 Kay and Wald5 have established that the evolution of 
regular (i.e., smooth and bounded), compact initial data 
will remain pointwise bounded in time throughout the entire 
domain of outer communication, including the boundary 
(horizon). An important point of physical relevance is that 
the result of Kay and Wald holds even for fields that do not 
vanish initially on the horizon (nor, in particular, on the 
bifurcation two-sphere of the global, Kruskal extension of 
the exterior Schwarzschild space-time). 

The other new result pertinent to the initial value prob­
lem for black hole stability is the subject of this paper, viz. 
mode stability for perturbations of the Kerr (rotating) black 
hole. Although of a different nature than the most recent 
results for the Schwarzschild space-time, the work reported 
here represents a major step forward in the study of black 
hole stability. The present work is also of great astrophysical 
significance since almost all astronomical bodies rotate, in­
cluding those that might eventually undergo gravitational 

collapse. Thus stability of rotating black holes is really a 
more pressing concern than is the stability of a static, spheri­
cally symmetric black hole. 

In the remainder of this paper, an introduction to the 
Kerr metric is first given, after which the difficult nature of 
the stability problem that it presents is indicated. Then, from 
a tractable form of the perturbation equations, differential 
and integral transformations of the equations and their solu­
tions are developed. Finally, the construction of a positive 
definite "energy" integral is given, permitting the proof of 
mode stability to be completed. The Appendix gives some 
mathematical details. The proof given here does not adhere 
closely to any previous work on this problem. 

II. THE KERR BLACK HOLE 

The Kerr metric, representing an axisymmetric, black 
hole solution to the source-free Einstein equations, was dis­
covered by Kerr6 almost 50 years after the spherically sym­
metric solution was first written. In subsequent work, Carter 
was able to establish,? rather unexpectedly, that the Hamil­
ton-Jacobi equation for a free particle and the Klein-Gor­
don equation for a scalar field were separable. (Carter also 
studied the relationship between this result and the form of 
the Kerr metric8

). Then, following a method used by Bar­
deen and Press9 for (the gauge and tetrad invariant) pertur­
bations of the Weyl tensor in the Schwarzschild geometry, 
Teukolsky demonstrated lO that analogous perturbations in 
the case of the Kerr black hole also obeyed a separable equa­
tion. Similar perturbation equations have since been 
found 11.12 for all fields of physical interest in a background 
Kerr geometry. 

III. PERTURBATION EQUATIONS 

Massless Klein-Gordon,7 Dirac (neutrino), II Max­
well, 10 Rarita-Schwinger,12 and linearized Einstein 10 equa­
tions, when written in a decoupled form for the correspond­
ing tetrad and gauge invariant Newman-Penrose13 (NP) 
quantities in the Kerr background (and including the 
Schwarzschild limit), can all be represented in a single (sep­
arable) master equation of Teukolsky, which in Boyer­
Lindquist coordinates J4 may be written as 
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{
a a I {_2 2 a a M}2 4 ( . () a -t::.--- (r +a )-+a-- (r- )s - s r+lacos )-
ar ar t::. at a¢ at 

+ __ a_sin2 () __ a_ + _I_{a sin2 ()~ + ~ + i cos ()'S}2}1/I.s = 0, 
a cos () a cos () sin2 

() at a¢ 

where t::. = r - 2Mr + a2 (1/I.s can be given suitably in 
terms of the relevant NP quantities). In the case of spin-zero 
fields on the Schwarzschild black hole, this equation imme­
diately admits a conserved "energy" integral with a positive 
definite integrand, establishing that there are no modes that 
have an unbounded time derivative, i.e., there are no unsta­
ble modes. The radial part of the equation is complex when 
acting on an individual mode of higher spin, but by a trans­
formation of the radial function for obtaining the Regge­
Wheeler3 (or corresponding 15 ) equation, a similar proof of 
stability can again be given4 for massless perturbations of 
spin-2 (and spin-I) in the Schwarzschild space-time. 

Except for axisymmetric scalar perturbations, no analo­
gous consideration has previously yielded even this limited 
proof of stability in the case of Kerr black holes for the fol­
lowing two reasons. 

(i) For nonaxisymmetric scalar perturbations the coef­
ficient (l/sin2 ()_a2/t::.) of /a1/l.,/a¢1 2 in the energy inte­
grand is only positive outside the ergosphere, indicative of 
the fact that there is no Killing vector which is timelike ev­
erywhere within the region exterior to the event horizon. 

(ii) Prior to this work, although transformations were 
known 16 that mapped Kerr radial functions to solutions of 
equations that reduced to Regge-Wheeler-type equations in 
the Schwarzschild limit, for the rotating black hole these 
other equations are quite unlike the Regge-Wheeler equa­
tion3 in that they depend on the separation constant (i.e., the 
unknown angular eigenvalue) in a highly nonlinear way. 

Procedures that remedy the above difficulties are given 
below. 

Physical considerations 11 lead one to regard as unstable 
modes those perturbation solutions that are purely ingoing 
on the horizon and purely outgoing at (null) infinity. Conse­
quently, in the exterior region, unstable modes have, 
asymptotically, support only on the future horizon and at 
future null infinity. Unstable modes have characteristic fre­
quencies with positive imaginary parts; thus on a spacelike 
section, they can be regarded as radial eigenfunctions, which 
become unboundedly large to the future. 

In the development of a proof of the mode stability for 
perturbations of a Kerr black hole, new progress has become 
possible through a generalization of certain previously 
known results; these results are detailed as follows. 

(i) There are Teukolsky-Starobinsky'7 ordinary differ­
ential relations that can be used to change helicity from s to 
- s for the radial and angular dependence of the separated 

solutions of Teukolsky's master equation. 10 

(ii) The kernel of an integral equation can be written lS 

for radial functions of spin-zero fields in the Schwarzschild 
background. 

In order to proceed, it will be convenient to introduce a 
notation for exploiting the similarity between the r and cos () 
dependence of the Teukolsky equation. 10 
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The separated radial and angular equations can be writ­
ten in the form [for 1/1 •• = e - iwt eimq, R. (7)S. «()] 

{a xx _ a 2 + aK + A + !K + 1 - ~ 2 

X X 

aK - A - lK 1 _';1. } + 2 + '* r 2 ..jx(x-l)u=O, 
x-I (x-1) 

where for the angular equation, x = (cos () + 1) /2, u = Ss' 

a=2aw, K=S, 

{3= (s-m)/2, Y= (s+m)/2, 

A = ! + a ( Y - {3) - ! ( Y - {3) 2 + (A T + s) 

(with a, {3, Y given above) 

and for the radial equation, x = (7 - 7 _ )/(7 + - 7 _ ), 
u=R s , 

a = 2iMwEo, K = S - 2iMw, 

{3= (s/2 + iMw) - (i/Eo)(Mw - am/2M), 

Y = (s/2 + iMw) + (i/Eo)(Mw - am/2M), 

A=!+a(y-{3) - !(y_{3)2+ (AT +s), 

(with a, {3, y given above). 

The separation constant AT appears in Teukolsky's radial 
equation 10; (AT +s) is invariant under s- -so The rela­
tions t::. = r - 2Mr + a2 = (r - r + )(r - r _ ) and 
Eo = (r + - r _ )/(r + + r _ ) have been used. 

Near x = 0, u_x{j'fJ, } 

nearx=l,u-(x-l){j"y, 8,8',8"= ±l. 
near x = 00, u _eooxx - {jK- 1, 

Weare particularly interested in transformations of the 
above equations which leave the singular points (number 
and type) and (AT + s) dependence unchanged. 

IV. DIFFERENTIAL TRANSFORMATIONS 

A general structure19 can be shown to underlie the con­
tiguous relations for special functions; familiar examples 
would be the differential operators which change angular 
momentum for the spherical Bessel and associated Legendre 
functions. By examining the Teukolsky-Starobinsky rela­
tions 17 in this context one can view them as a particular con­
sequence of the following. For those values of E, E', 

E" ( = ± 1) that allow 

n = EK + E'{3 + E" Y 

to be a positive integer (there can be four such at most), then 
with 

ii = - Ea, if = E'{3 + E" y, 

lJ = n/2 - E'{3, A = A, 

r= n/2 - E"Y 

the function given by 
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ii = e'lXxP(x - 1)r( ~ fe€axxE'P(x - 1)€'Yu 

satisfies a similar equation to that satisfied by u, where the 
new parameters are given by the overtilde quantities above. 
The set of equations that can be obtained by repeated appli­
cation of this result is finite. A certain degeneracy occurs 
when the derivatives act on the polynomials that they anni­
hilate. There is an inverse transformation operator 

emxxE'p(x - 1)€'Y( ~ feaxxP(x - 1)r 

which maps solutions for ii onto solutions for u, with a simi­
lar statement as above applying in the case of degeneracy. 

The Teukolsky-Starobinsky (helicity flipping) rela­
tions!7 are a known example of this kind of transformation, 
with n = \2sl in the radial and angular transformations. For 
the radial functions, no other integer values of n are possible 
for a general value of the frequency except on a Schwarzs­
child space-time, in which case a new expression of known 
results is obtained. 20 For the angular functions, n = Is - m \ 
and n = Is + m I are always additionally possible; they map 
angular eigenfunctions to eigenfunctions of two new opera­
tors which are related to one another by x .... 1 - x, i.e., by 
cos O .... cos( 1T - O}. A solution of one of these new operators 
is given by 

m Tis = (sin O}ls-ml(~ + am 
a cos 0 

(s + m cos O})IS- ml + . 20 sSlm (O), 
sm 

where s - m = Eis - m I. This new angular function Twill 
be used in a proof of stability: For nonzero a = 2am, its con­
struction can never be degenerate. 

V.INTEGRAL TRANSFORMATIONS 

The known integral equation 18 for scalar wave functions 
in the Schwarzschild space-time was of the Laplace type, 
where the "center" of the kernel [i.e., that part of the inte­
gral kernel given by the nonseparable functions H(x,y) 
which occur in the expressions below 1 is of the form e - axy . 
For all the radial and angular functions arising from pertur­
bations of the Kerr black hole, I have recently found kernels 
of integral equations which they satisfy, where these kernels 
are now more complicated functions of xy: Similarly, Euler­
type kernels depending on (x + y - I), etc., have also been 
found. Moreover, the conditions that disallow the existence 
of integral kernels simply depending on the functions xy, 
x + y - 1 (or their variants) are precisely those conditions 
that permit the construction of integral transformations21 to 

I 

{ 
(r - r ) 2 a2 (r - M) 2} ll. 

fer) - 2 --2 -(>Oforr>r+): 
(r-r+) M ll. Co 

the solutions of new equations of the same general type as we 
need to consider. In the radial case, for the spin-2 (gravita­
tional) perturbations on the Schwarzschild background, one 
of these new equations turns out to be the Regge-Wheeler 
equation3 previously related to the NP perturbations 13 only 
by a differential transformation: Its simple generalization in 
the Kerr case will again be useful in a proof of stability. 

These integral transforms can be described as follows. 
Under suitable conditions, the function 

ii = LBY(X,Y}U(Y}dY 

will satisfy an equation of our given form provided that E, E', 

E" ( = ± I) can be chosen so that y(y - I} 

X W(u(y},Y(x,y})I! vanishes identically. (Here Wis the 
Wronskian.) The function Y(x,y} has the general form 

eaxxP (x - I) YH(x,y)emyy€'p (y - 1 }€"y 

and a number of different usable "centers" H(x,y) have been 
identified, e.g" e- 2mxy, (x + y - 1) -y- t, etc. (where 
v = EK + E'fJ + E" Y whether or not it is an integer or real). 
For the first of these "centers," the quantities 

a = Ea, K= E'fJ- E"y, 

jJ = !(EK + E'fJ + E"y), X = A., 

r=!( -EK+E'fJ +E"y), 

give the parameters in the equation for ii. (Note that A. is 
again unchanged.) 

We will choose a bounded new radial function m Kis giv­
en by an integral transform of _ lsi Rim (r) over the range 
(r +,(0), with E,E', E" = - 1. Since the "center" is of the 
Laplace type, this integral transformation will never be de­
generate. In what follows, stability for negative helicity 
modes will also assure stability for positive helicity modes 
because, via the Teukolsky-Starobinsky relations,17 the 
modes can be independently transformed into one another. 
(Only for the algebraically special perturbations are these 
transformations singular,22 but then the boundary condi­
tions given above for unstable modes are not satisfied,) 

VI. PROOF OF STABILITY 

The transformations that have been chosen ensure that 
the Kerr angular and radial functions corresponding to an 
unstable mode will map to bounded solutions of the new 
operators. In addition, this construction implies that the 
function 

<l>s = e-;'"'e;m4>K,(r)T,(O} 

will satisfy the equation given below, where 

[~ll.~+-l-..E..sinO..E..-(f(r) +a2cos20)~ -2a(COSO + r-M)~_r(l-COSO + r-r+)]<I>s =0. 
ar ar sin 0 ao ao at 2 EoM at a¢ 1 + cos 0 r - r _ 

Here the operator is totally independent ofTeukolsky's separation constant A. T' JO (Note that in the metric that can be derived 
from this equation, a/at is globally null.) The conserved quantity that follows from the operator has a positive integrand: 
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~~fdrdOd¢>sinO{(f(r) +a2cos2 0)/a4>/2 +a/a4>/2 + /a4>/2 +s2(I-COSO + r-r+)I<I>12} =0. 
at 2 at ar ao 1 +cosO r-r_ 

Since the leading radial dependence of <I> s near the horizon is 
(r - r +) - 2iM," and near infinity it is eit

"' and the leading an­
gular dependence near the south pole is (sin O)S, every term 
in the above integrand is integrable for unstable modes. 
Hence the value of the conserved "energy" bounds the inte­
gral of the time derivative terms, which consequently cannot 
grow exponentially. Thus there can be no unstable modes for 
Kerr angular and radial functions since we have now ruled 
out the solutions of the above equation to which they would 
be mapped. 

Parameters in the transformations depended explicitly 
on the mode decomposition. Consequently, it seems that any 
stronger result for the Kerr black hole would require addi­
tional understanding concerning mode completeness since 
the particular methods of Kay and Wald,5 which might cir­
cumvent this, are not directly applicable and no appropriate 
generalization is known at present. 
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APPENDIX 

Properties of the transformations referred to III this pa­
per may be sufficiently unfamiliar to some that it would be 
useful here to sketch a proof of the most important relations. 
A simple derivation of the differential transformation can be 
obtained via the use of the following two elementary results: 

e£axx E'/3(x -l)€-y{a",,,, _ a 2 + aK+ A + 4 _{32 + aK- A + 4 - r } ~x(x _ 1) 
X x2 x-I (x - 1)2 

1 {x(x _ 1 )axx + (ax2 + bx + c)ax + dx + e}eEaXxE'/3(x - 1 )E-Y, 

~x(x-l) 

where 

a= -2ea, b=2(ea-e'{3-e"r+1), c=2c'{3-1, 

d = 2ea (eK + E'{3 + E" r - 1), e = - aK - A - (2E'{3 - 1) (€a + ~ - E" r). 

Result (ii): 

a.~{x(x-l)axx + (ax2+ bX+'c)ax -a(N-l)x+e} 

= {x(x - l)axx + (ax2 + (b + 2N)x +c - N)ax +a(N + l)x + e +N(b +N -l)}a~, 

which accounts for the necessity that Nbe a positive integer. 
In the case of the integral transformations, explicit demonstration of the results depends on the form of the integral 

"center" H(x,y), e.g., for H(x,y) = e - axy we have 

[x(x-l)axx + (ax2+bx+c)dx -avx+e]e- axy = [y(y-l)ayy + (ay2+by+ v)ay -acy+e]e- axy. 

When c = v it is thus possible to construct an integral equation for u(x). 
Similarly, for H(x, y) = (x - y) v, say, we can obtain 

[x (x - l)axx + (ax2 + bx + c)ax - avx + e] (x _ y)V 
= [y(y-l)ayy +{ay2+(b+2(v+ l))y+c- (v+ l)}ay +a(v+2)x+e+ (v+ l)(b+v)r(x-y)V, 

where we have indicated by the superscript t the adjoint operator which arises under the integral sign in a verification of the 
transform properties. Note the similarity of the transformed operator here to the operator arising for the differential trans­
form (with N-v+ 1). The transformation properties for other similar "centers," e.g., for those depending on 
(x - 1) ( y - 1) or (x + y - 1), can be constructed directly or obtained by the substitution x-I - x, etc. 

Kernels for integral equations can be produced in abundance as a result of the elementary (but nontrivial) observations 

(x(x - l)axx + (ax2 + bx + c)ax + dx + e) - {y( y - l)ayy + (ay2 + by + clay + dy + e) 

= (x-y)[(uauu + (au-c)au +d+/-L) -(vauv + (-av+a+b+c)au +/-LI] 

= (x - y){(jOff + (af + a + b)af + d + a/f) - [(1 - g)/f] 

X [g( 1 - g)agg + ( - (2 + c)g + a + b + c)ag + 0/( 1 - g)]}, 
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where u=xy, V= (x-l)(y-I), !=x+y- 1, and 
g = (x - 1) (y - 1 )/xy. Here, I-l and a would be new con­
stants of separation. 
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In four dimensions, two metrics that are conformally related define the same Hodge dual 
operator on the space of two-forms. The converse, namely, that two metrics that have the same 
Hodge dual are conformally related, is established. This is true for metrics of arbitrary 
(nondegenerate) signature. For Euclidean signature a stronger result, namely, that the 
conformal class of the metric is completely determined by choosing a dual operator on two­
forms satisfying certain conditions, is proved. 

I. INTRODUCTION 

Self-dual fields have played a major role in many of the 
recent developments in general relativity. Foremost among 
these is Penrose's twistor program (see, e.g., Refs. 1 and 2). 
Such fields seem to be fundamentally involved in attempts to 
quantize gravity (see, e.g. Ref. 3), notably Ashtekar's new 
variables (for a review see Ref. 4). The material discussed 
here was motivated by the attempts of one of us (JS) to 
better understand Ashtekar's new variables, but the presen­
tation is entirely self-contained. 

In four dimensions the Hodge dual operator on two­
forms is manifestly conformally invariant. Thus, if two met­
rics are conformally related, they have the same Hodge dual. 
We show that the converse is also true: Two metrics of arbi­
trary (nondegenerate) signature that have the same Hodge 
dual are conformally related. For Riemannian manifolds 
(signature + + + + ), we are able to establish a much 
stronger result: Any choice of a three-dimensional, positive­
definite subspace of the space of two-forms determines a 
dual operator, which in turn determines a conformal class of 
metrics whose Hodge dual agrees with the original choice. 
Thus there is a one--one correspondence between conformal 
classes of metrics and dual operators. 

Our presentation is organized as follows. After estab­
lishing the notation in Sec. II we show that the equality of 
Hodge duals implies that the metrics are conformally relat­
ed. In Sec. III we consider the Riemannian case and establish 
the stronger result described above. Finally, in Sec. IV we 
discuss our results. 

II. CONVERSE 

Let M be an oriented four-dimensional manifold with 
(nondegenerate) metric gab' The volume element (Levi-Ci­
vita tensor) is the four-form Eabed = E[abed I' which agrees 
with the orientation and whose nonzero components are 

aJ Permanent address: Department of Mathematics, Oregon State Universi­
ty. Corvallis. Oregon 97331. 

bJ Permanent address: Department of Mathematics. University of Poona. 
Pune 411007. India. 

cJ Present address: Department of Physics. University of Utah. Salt Lake 
City. Utah 84112. 

± Jjgf, whereg = det(gab)' Denote by A 2
, the space of two­

forms Fab = F[ab I on M. Then the Hodge dual operator *, 
defined by gab' is a map from A 2 

..... A 2 given by 

(*F)ab = !Eab edFed · (1) 

It is straightforward to check that 

gab = 11gab =:> * == *. (2) 

One also has 

**= ±/, (3) 

where / is the identity operator and 

(4) 

where the - sign holds for the Lorentzian signature 
[( - + + + ) or ( + - - - )] and the + sign holds 
for all other signatures. We are now ready to prove the con­
verse to (2). 

Theorem 1: Let gab and gab be (real, nondegenerate) 
metrics of arbitrary signature on a four-dimensional mani­
fold M, such that for all two-forms F on M, 

*F==*F. 

Then 
gab = ± 11gab , 

where 11 = IgIgI 1
/
4

• 

Proof: 
Step 1: Equation (1) implies 

which implies 

Ecd
mn = Ecd

mn
• 

But from the definition of the volume element, 

Contracting (8) with (7b), using (4), yields 

ga[egdlb = 11
2
ga[egdlb' 

(5) 

(6) 

(7a) 

(7b) 

(8) 

(9) 

Step 2: It is sufficient to establish (6) at each point pEM. 
Choose coordinates Xi on a neighborhood of p so that gij Ip is 
diagonal. Then 

giUgk II = 0, unless (i,k) = (j,/) 
or (i,j) = (k,i). (10) 
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In particular, (10) holds ifj, k, and I are all different. (Here 
and for the remainder of the proof, all quantities are to be 
evaluated at p. ) 

Using (9) and (10) we have 

(gugjj - it )ril = (gugkl) (gjjgkl) - (gijgkl) (gijglk) 

= (gikgi/) (gjkgjl) - (gikgjl) (gi/gjk ) 

= 0 (for E ijkl # 0) . (11) 

But since gugjj - kt #0 by assumption, one final use of (9) 
yields 

(12) 

so that gij is also diagonal at p. 

Step 3: Inserting the diagonality of both gij and gij into 
(9) yields 

h h c.2 !" • ...J. • 
gugjj = U giigjj' lor l-r'j, 

which implies the result (6). 

III. EUCLIDEAN SIGNATURE 

(13) 

Q.E.D. 

We now turn to the special case of an oriented Rieman­
nian manifold [signature ( + + + + ) or ( - - - - )] 
with volume element Eabcd' First we need some results about 
the vector space A; of two-forms at a point pEA/. 

There is a natural product (symmetric bilinear form) on 
A2

, given by the wedge product offorms, namely, 

(Fab,Gcd ) = ~bcdFabGcd' 

or equivalently 

(F,G)E = FI\G, 

where ~bcd = Elabcd I is defined by 

Eabcd~bcd = 4! . 

(14a) 

(14b) 

(15) 

Note that the metric has not been used in defining (14) 
and that the inner product is not positive definite. If one 
chooses a basis a i of the space A! of one-forms at p, then the 
independent a i 1\ d form a basis for A;. In four dimensions 
there are six such two-forms, so dim A; = 6. Furthermore, 
by choosing appropriate linear combinations, one easily sees 
that the signature of the wedge product (14) on A; is 
(+ + + - - -). 

Lemma 1: Given a vector space V with a symmetric 
bilinear form w: V X V ..... R and a subspace W + C V, such that 
( W +, w) is an inner product space (i.e., wi w + is positive 
definite), there exists an operator #: V ..... V, such that 

V=W+ffiW-, 

with 

(16a) 

(16b) 

Proof Pick an orthonormal basis Wi of W +. Then the 
projection operator P from V to W + is given by 

P: V ..... W+, 

V ~ (v,w,)wi • (17) 

Define # by 

#v= 2Pu- v. (18) 

1307 J. Math. Phys., Vol. 30, No.6, June 1989 

Then 

P=!(I+#), (19) 

and the result follows. Q.E.D. 
Corollary: It is an immediate consequence of ( 18) that 

## =1. (20) 

Furthermore, since (I + #) (1- #) = 0, we have 

(w+,w-) = 0, 'VW±EW ±, (21a) 

or equivalently 

(2Ib) 

Let TpM denote the tangent space to M at p and for 
TETpM let Ker( T) = {aEA!: a( n: = aa ra = O} denote 
the kernel. 

Lemma 2: Let A + be a three-dimensional subspace of 
A;, such that 

O#FEA + => F I\F #0. (22) 

Then for each vector TETpM, the map 

ifJT: A + ..... Ker T, 

(23) 

is an ismorphism. 
Proof Since dim(Ker n = 3 is suffices to show that ifJT 

is one-one, i.e., that F( T) = 0 implies F = O. But by choos­
ing a basis of Ker T and extending it to a basis a i of A! and 
then forming the associated basis of A;, one sees that 

F(n =0 => FI\F=O. (24) 

Using (22) now proves the assertion. Q.E.D. 
For the remainder ofthis section, we assume that A + is 

as in Lemma 2, and that the wedge product (14) is positive 
definite on A +. Using Lemma 1, this is equivalent to giving a 
dual operator # on A;; A + is the space of self-dual two­
forms, i.e., 

FEA + ¢:} #F= F. (25) 

We now show how to construct a conformal metric hI! 
from A +. Fix any 7]EA!. Then for any a,/3E A!, choose 
TEKer anKer /3nKer 7]. By Lemma 2, there exist unique 
Fa,Fp, F'I EA+, so that Fa(n =a, Fp(n =/3, and 
F'I (n = 7]. Define 

hI! (a,/3)lhl! (7],7]) = (Fa,Fp )/(F'I,F'I)' (26) 

This defines hI! up to the single choice of the scale hI! (7],7]), 
i.e., hI! is determined up to a conformal factor. 

We now establish that hI! is well defined, i.e., that the 
right-hand side of (26) is unchanged under the transforma­
tion T~ T' with both T,T'EKer anKer /3nKer 7]. This is 
obvious if T' is a multiple of T, so we will assume that T and 
T' are linearly independent. First we introduce some nota-
tion. 

Extend T and T' to a basis {eo = T,e, = T',e2,e3 } of 
TpM and let {wO,W

1
,W

2
,W

3
} be the dual basis of A!. Let F2, 

F3, F2', and F3' be the unique elements of A + obtained using 
Lemma 2 that satisfy 
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But since (27) implies 

Fz(T',n = 0 = Fz(T',T'), 

we have 

Fz(T') =A22W2 + A 23W3, 

(28) 

(29a) 

for some constantsA22 andA23 so that, again using Lemma 2, 

F2=Az2F2' +A23F3'· 

Similarly, 

(29b) 

F3=A32F2' +A33F3'. (29c) 

Since this argument can be reversed to express F2', and F3 ' in 
terms of Fz and F3, we must have 

(30) 

Now consider the transformation TpM -+ TpM, defined 
by 

(31a) 

where 

b: = tr A = A22 + A33, (31b) 

and c,d are constants to be determined. The induced trans­
formation on A! is 

Wo t---+ - (b I A )wo + WI - cwz - dw\ 

which we will also write as 

d t---+ B 5wj. 
Lemma 3: Let YEA! satisfy 

y(T) =O=y(T') 

and let F,F'EA + be determined by Lemma 2, so that 

F(T) = Y = F'(T'). 

(32a) 

(32b) 

(33) 

(34) 

Then (for an appropriate, y-independent choice of c,d), 

F'=B'FB, (35a) 

i.e., 

(35b) 

Proof One has immediately that 

B'FB(T') =B'F(n =B'y=y=F'(T). (36) 

In order to invoke Lemma 2 to conclude that (35) holds by 
uniqueness we must show that c,d can be chosen, so that 
B tFB is in A + . 

But since 

y=Y2W2 + Y3W3, 

we see that 

(37a) 

(37b) 

so that it is enough to show that B tF2B and B tF3B are in 
A +. Direct calculation using (29), (34), and (37) shows 
that the first of these reduces to a linear equation involving d 
only, while the second determines c. We note in passing that 
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(32) is not the only linear transformation that satisfies (35). 
Q.E.D. 

Lemma 4: h# is well-defined. 
Proof Assume, as above, that Tand T' are linearly inde­

pendent and let Fa', FI/, and F,.,' be the unique elements of 
A + determined by Lemma 2 which satisfy F/(T') = a, 
FI/C T ') = (J,F,.,'(T') = 1]. Then 

(Fa ',FP') = €"bcdFa 'ab F{3' cd 

_€"bcdF F Bm B n BP Bq - amn {3pq abc d 

=€mnpqFamnF{3pq (detB)f 

= (Fa ,F{3) C det B) J, 

where f is a constant that depends on the volume element. 
Therefore the two factors of C f det B) in the primed version 
of (26) cancel so (26) is independent of the choice of T. 

Theorem 2: Let * be the Hodge dual defined by the met­
ric gab' Then h. artd g are conformally related. 

Proof For F = *F, G = *G, we have 

(F,G): = €"bcdFab Gcd 

= 2FabC*G)ab = 2FobGab · 

But for any TETpM, we have 

Fam TmG anTn = !€ampqFpqTm€"nrsGrs Tn 

= ~!5lm "!5/!5q]sFpqGrsTmTn 

so that 

4Fam TmGa"Tn = FpqGpq TmTm, 

or in other words, 

g(Fcn,G(n} = (F,G)(gCT,n/8), 

so that 

g(F(n,G(n)lg(Hcn,Hcn) = (F,G)/(H,H). 

(38) 

(39) 

C40a) 

(40b) 

(41 ) 

Comparison with (26) shows that g is in the same conformal 
class as h. . Q.E.D. 

This shows that our definition (26) reproduces the giv­
en metric from its Hodge dual. We now show the converse. 

Theorem 3: Let h# be defined by (26) and denote its 
Hodge dual by •. Then. = #. 

Proof Choose an orthonormal (with respect to h# ) ba­
sis w a of A! satisfying 

(42) 

Let Fi, i = 1,2, 3, be the self-dual (with respect to #) two­
forms defined by FiCXO) = Wi, where Xa is the basis of TpM 
dual to w a

• Then, e.g., 

FI = WO I\wl + a(ll21\(ll3 + bwl l\w2 + cw3 l\w l, (43) 

with a > O,b,c, to be determined. But using the definition 
(26)~ we have 

(F i, Fi) = 8ij(F', FI), (44) 

which implies 
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p 2 = mO Am2 + am3 Ami + cm2 Am3 + dm l Am2, 

p 3 = mO A m3 + ami A m2 + dm3 Ami + bm2 A m3
• 

Repeating this procedure for XI' e.g., constructing 
GO(XI ) = mO, etc., and using the fact thatthepiform a basis 
for self-dual two-forms, yields a set of linear equations that 
can be solved to give 

b = c = O. 

Finally, using X 2 gives 

d = 0, a2 = 1, 

so that 

pi = mO A ml + m2 A m3, 

p 2 = mO Am2 + m3 Ami, 

p3 = mO Am3 + ml Am2. 

(45) 

(46) 

(47) 

But this is just the standard basis for self-dual two-forms 
with respect to *! Q.E.D. 

IV. DISCUSSION 

For Euclidean signature, let JI denote the manifold of 
classes of conformal metrics at a point pEM and JY denote 
the manifold of dual operators on A;. We have the following 
situation: 

A 
JI<=tJY, 

B 

where A takes a metric to its Hodge dual, and B is given by 
(26). Theorem 2 says that BoA = I, while Theorem 3 says 
that A 0 B = I. Thus both A and Bare one-one and onto, and 
are therefore isomorphisms. The manifold JI is nine-dimen­
sional (10 metric component~ - 1 constraint), and the 
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manifold JY:::::;SO(3,3)/[SO(3) + SO(3)], so dim JY 
= 15 - 6 = 9. 

All of our results have been obtained at a point pEM. 
Suitably smooth metric tensors and dual operators are ob­
tained by working throughout with suitably smooth tensor 
fields in a neighborhood of p. 

We believe that a result similar to Theorems 2 and 3 
holds for other signatures. However, our attempts to modify 
the argument in Sec. III have so far failed, primarily because 
of the failure of Lemma 2 if Tis null. In the Lorentzian case, 
one can define aEA! to be null if there exists a (real) two­
form P and a vector T such that 

F(n =a, ~W(n =0, PAP=O=PAf,P. (48) 

Although this definition is correct if f, is the Hodge dual of a 
Lorentzian metric, we have been unable to use it to actually 
construct a conformal metric. 
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Magnetic generalizations of all Carter metrics-Carter A, B( + ), B( - ), and D solutions­
are obtained by applying a Harrison transformation to the Ernst potentials determined from a 
linear combination of two Killing vectors. The most general magnetized Carter-A metric 
contains, among other solutions, the magnetized Kerr-Newman metrics and, modulo limiting 
transitions, the magnetized branches B( + ), B( - ), and D. 

I. INTRODUCTION 

The main purpose of this work is to give the explicit 
expressions of the metric and electromagnetic field for a gen­
eral magnetic generalization of the Carter-A solution,l C-A 
for short. Since the seed C-A metric represents the axisym­
metric gravitational field of rotating charged masses and the 
magnetizing process used (Harrison transformation2

) in­
corporates into the seed solution two electromagnetic field 
parameters and two kinematical constants (corresponding 
to the choice of the Killing vectors), the magnetized Carter­
A metric obtained, MC-A for short, contains (besides the 
parameters of the C-A metric) four additional parameters. 

The MC-A metric contains as subbranches of solutions 
the magnetized Kerr-Newman metrices (MKN), corre­
sponding to magnetic generalizations of the seed KN solu­
tion for the both choices of the Killing vectors at/> and at. 

The magnetizing procedure applied to the Carter­
B( ±) metrices (Ref. 1) yield the magnetized Carter­
B( ± ) solutions, MC-B( ± ) for short (see Secs. III and 
IV). Since the MC-B( ± ) metrics are interrelated by com­
plex transformations [the same fact takes place in the case of 
"proper" C-B( ± ) solutions], one can consider the MC-B 
metric as a complexified space-time and the real MC-B( + ) 
and MC-B( - ) solutions as two different real cuts of the 
same complex structure. The MC-B( ± ) metrics contain as 
particular solutions the magnetized Reissner-Nordstr6m 
metrics, which we shall denote by MRN ( ± ). 

Section V deals with the determination of the magne­
tized Carter-D metric, which in all respects is equivalent to 
the magnetized Bertotti-Robinson metric.3 We propose to 
call this class of solutions the magnetized Bertotti-Robinson 
metric and denote it by MBR. 

In Sec. VI we present limiting transitions of the MC-A 
metric to the MC-B( ± ) solutions. From the MC-B( ± ) 
metrics, for vanishing parameter I, one arrives at the 
MRN ( ±) solutions. By limiting transitions of the 
MRN ( ± ) metrics one obtains the MBR solution, which 
degenerates into a magnetic flat space-time class of solutions 
(MF) containing as a particular case the Melvin magnetic 
universe.4 Hence the obtained solutions satisfy the following 
scheme of transitions: 

MC-A- {MC-B( + ) -MRN( + )} _MBR_MF. 
MC-B( - ) -MRN( - ) 

It should be pointed out that we are dealing with metric 
structures without the cosmological constant, i.e., with mag­
netized Carter metrics (and their limiting contractions) 
with vanishing A. 

II. MAGNETIZED CARTER-A METRIC 

We shall briefly give the steps followed to generate the 
MC-A solution starting from the seed C-A metric. Let the C­
A solution be given in the formS 

11 P 11 g= _dp2 + _ (dr+ q2 dU)2 + _dq2 
P 11 Q 

_ ~ (dr _ p2 dU)2, (2.1 ) 

with the electromagnetic field described by the two-form 

w =! (~v + fl'v)dxl' /\ dxv 

= -d[(e+ig)/(q+ip)](dr-ipqdu). (2.2) 

The structural functions P, Q, and 11 are 

P= y- v+ 2np _Kp2, 

Q = y + v - 2mq + Kq2, 

11 = p2 + q2, 

2v: = e2 +gZ, 

(2.3) 

where m is the mass, n represents the Newman-Unti-Tam­
burino (NUT) parameter (magnetic mass), e and g are the 
electric and magnetic charges, y is related to the rotation 
(Kerr) parameter, and K is a free parameter which can be 
considered to assume the discrete values {I, 0, - n. 

Choosing the Killing vector as a linear combination of 
the Killing directions a 7 and aCT according to 

KI' = a8~ + {38':-, (2.4 ) 

one brings the metric (2.1) to the form 

g =f- 1{f[ (11IP)dp2 + (11IQ)dq2] 

+ PQ( {3 dr - a dU)2} - f{ - (a dr + {3 du)1 

(a2 +{32) + W j ({3dr-adu)P, (2.5) 

where 

1310 J. Math. Phys. 30 (6), June 1989 0022-2488/89/061310-06$02.50 © 1989 American Institute of Physics 1310 



                                                                                                                                    

- / = KI-'K I-' = 11- 1
{ P(a + {3q2)2 

- Q(a - {3p2)2} = :11- ID, (2.6) 

and 

Wj = - [D -1/(a2 + {32) ]{(a + {3q2)( {3 - aq2)P 

- (a - {3p2) ( {3 + ap2)Q}. (2.7) 

The subindex i in W stands for "initial." 
The Ernst potentials ( cP and ~) of the metric (2.5) can 

be evaluated from the relations 

dcp = - iK J cu, 
(2.S) 

d~ = iK(dK + * dK) - 2~ dcp, 

where K = KI-'dxl-', J denotes the step product, and * is 
Hodge's star operation (see details in Ref. 6). 

and 

The Ernst potentials for the studied metric is 

cp = - [(e + ig)/( q + ip)](a - i{3pq) + CPo, 

CPo = F+ iG, 

If =/ - 2vl1-l(a2 + {32p2q2) 

+ 2i{mp[I1- I (a - {3p2) 2 + {3(3a - {3p2)] 

- nq[I1- 1 (a + {3q2) 2 
- {3(3a + {3q2)] 

(2.9) 

- a{3Kpq + {32rpq - {3vl1- lpq [2a + {3( q2 _ p2)]} 

+ 2~0[ (e + ig)/( q + ip)](a - i{3pq) + If 0, (2.10) 

where F, G are real constants and If 0 is an arbitrary complex 
constant. 

To magnetize a given metric one applies the Harrison 
transformation to the Ernst potentials according to the rules 

~ = ~tP-t, ~ = tP-1(cp + (E + iB) If), 

dW = tPfi;dWj - ij-I{(tPfi;.p - fi;tP,p)Pdq 

- (tPfi;,q - #.q)Qdp}. (2.13 ) 

The generated magnetized Carter-A metric, MC-A met­
ric for short, amounts to 

g=ltPI 2
{ !dp2+ ~dq2+/-IPQ({3dr-adO')2} 

-ltPl-2/{ - a dr + {3 dO' + W ({3 dr _ a dO')}2, 
a2 + {32 

(2.14 ) 

with the electromagnetic field given by the two-form 

_ cu = d~ 1\ [- ad: + {3 :0' + W( {3 dr - a dO')] 
a +{3 

+ * { d~ 1\ [_ a dr + {3 dO' 
a 2 +/p 

+ W( {3 dr - a dO')]} . (2.15 ) 

The structural functions P, Q, and 11 are given by formu­
las (2.3), the function/is defined as in formula (2.6). The 
complex factor function tP is given, in terms of the Ernst 
potentials cp and If from (2.9) and (2.10), according to for­
mula (2.11). 

The W function, which from now on we shall denote as 
W(E,B la, {3), is given by 

W(E,B la, {3) = W(O,Ola, {3) + fl(E,B la, {3) 

where 

W(O,Ola, {3) = Wi [from (2.7)], ~) = const, 

the function fl(E,B la, {3) amounts to 

(2.16) 

(2.17) 

tP=I-2(E-iB)cp-olf, O:=E2+B2, (2.11) Dfl(E,Bla,{3) 

E = const, B = const 

(the tilde is used to denote the new quantities). 

= 4E( + )(a + {3q2)qP + 4E( - )(a - {3p2)pQ 

+ Mv[ (a2 _ {32q4)p + (a2 _ {32p4)Q] 

The new / function becomes + 4DE( + )JI + 4DE( - )..% 

j = ItPl- 2J, (2.12 ) 

while the new W function ought to fulfill the equation where the polynominals .!if, flj, JV, JI, and"% are 

1311 

.!if = a4(2m2 + 2n2 - 4mKq + ~q2) - a 3{3q2(Sn2 + 4Kr + ~q2) + 2a2{32q2[ (r - v)(2(r + v) - 6mq 

+ Ki) - (m2 + 3n2)q2] + a{33q4[2(r - v)v + 4n2q2 - (r - v)(6m - Kq)q] - {34(y _ V)2q6, 

flj = a4(2m2 + 2n2 - 4nKp + ~p2) + a 3{3p2(Sm2 - 4Kr + ~p2) + 2a2{32p2[ (r + v)(2(r - v) + 6np _ Kp2) 

- (n2 + 3m2)p2] + a{33p4[2(r + v)v - 4m2p2 - (r + v)(6n - Kp)p] - {34(r + V)2p6, 

JV = Sa3{3(mq + np) + 12a2{32(nq - mp)pq + 3a{33pq [ q(2pQ - 4Kpq2 - 2nq2 + 3Kp3) - p(2qP + 4Kqp2 

+ 2mp2 - 3KIj)] - {34p2q2 [3 (r + V)p2 + 3 (r - V)q2 - 2mqp2 + 2npq2] , 

JI = (a + {3q2}[am(a - {3q2) - {32( r - v)~ - a 2Kq]P + am(a - {3p2)(a + 3{3p2)Q 

+ {3q[2a(a - {3p2) - {3p2(a + {3q2) ]PQ, 

..% = (a - {3p2)[an(a + {3p2) + {32(r + V)p3 - a 2Kp]Q + an(a + {3q2)(a - 3{3q2)P 

+ {3p[2a(a + {3q2) + {3q2(a - {3p2) ]PQ, 
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the symbols E( + ) and E( - ) in the expression above are constants defined as 

E( + ): = Ee + Bg, E( - ): = Eg - Be. (2.20) 

Thefunctionn( rPo,'C 0)' withrPo = F + iG = constand 'Co = - (F 2 + G 2
) - iE= const, which represents the contri­

butions to WeE, B la, P) of the additive constants in the Ernst potentials, can be given as 

Dn( rPo,'Co) = - {4(EF + BG) - M( F2 + G 2) + 48[ (EF+ BG)( F2 + G 2) + (EG - BF)E] 

- 82[~ + ( F2 + G 2f]}DW(O, Ola, P) - 128{ ( Fe + Gg)(a + pq2)qP+ (Fg - Ge)(a - Pp2)pQ] 

+ 48{ B( F2 + G 2) - EE - 4G( EF + BG) + o[ G( F2 + G 2) + FE]}[e(a - Pp2)pQ - g(a + pq2)qP] 

- 48{ E( F2 + G 2) + BE - 4F( EF + BG) + 8 [ F( F2 + G 2) - GE]}[ g( a - Pp2 )pQ 

+ e(a + Pq2)qP] + 48[2(EG - BF) - DE] [m(a2 - P 2p4)pQ - n(a2 - p 2q4)qP - p 2ApqPQ] 

_ Mv[2(EF + BG) - 8( F2 + G 2)] [(a2 _ p 2q4)P + (a2 _ P 2p4)Q] 

- 482 
( Fe + Gg) JI + 482 (Ge - Fg) fl. 

The function n( rPo,'C 0), included here for complete­
ness of the obtained solution, is useful when one accom­
plishes limiting transitions to derive other subclasses of solu­
tions (see Sec. V). 

The magnetized Carter-A metric, given by Eqs. (2.18)­
(2.21 ), is endowed with the following set of parameters: 

ct: = {m,n,K,y,e,g,E,B,a, P}, (2.22) 

where m is the mass, n is the NUT parameter, K and yare 
related to the rotation parameter, e and g correspond to the 
electric and magnetic charges, E and B are the "external" 
field parameters, and a and P are the selecting Killing vec­
tors parameters. 

By assigning to these parameters some particular values 
one obtains subbranches of solutions of the MC-A metric. 
For instance, choosing 

ct = {m,O,l,! e2 + a2
, - e,O,E,B, p'a - a',a-1p'}, 

(2.23) 

and accomplishing in the MC-A metric (2.18)-(2.21) the 
coordinate transformations 

P = a cos e, q = r, r = arP - r, 0" = a-1rP, 

a = const, 
(2.24) 

one arrives just at the most general magnetic generalization 
ofthe Kerr-Newman metric (MK-N), which in particular 
contains the magnetized Kerr-Newman metric obtainable 
from the Killing vector a"" 7.8 and also class of magnetized 
Reissner-Nordstrom metrics (MRN); at least three gener­
alizations for two out of the four Killing vectors which the 
RN solution possesses. 

Other choices of ~ will give rise to different subclasses 
of magnetized metrics, among them, those corresponding to 
the seed vacuum metrics. 

III. MAGNETIZED CARTER-B( +) METRIC 

Starting from the seed Carter-Be + ) metric given in the 
coordinate chart {p, q, r, O"}, 5 and applying the magnetizing 
procedure outlined in the previous section, one arrives at the 
magnetized Carter-Be +) solution [MC-B( + )] deter­
mined by the metric line element 
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g = 11W{(AIP)dp2 + (A/Q)dq2 

+ /-IPQ( P dr - a dO")2} 

-1¢'1- 2
/{- [II(a2+p2)](adr+pdO") 

+ W(pdr-adO")P, 

and the electromagnetic two-form 

- w = d~[ - (II(a2 + p2»)(a dr + P dO") 

+ W( P dr - a dO")] 

(2.21 ) 

(3.1) 

+ * {d~[ - (II(a2 + p2»)(a dr + P dO") 

+ W(pdr-adO")]}. (3.2) 

Notice that the metric g and the electromagnetic field w 
for the MC-A solution are in exactly the same form as for the 
MC-B( + ) solution. 

The structural functions P, Q, and A for the studied MC­
B( + ) metric are 

P = a + 2bp - KP2, 

Q = 2v - [2 - 2mq + Kq2, 

A = q2 + 12
, 

2v= e2 +g2, 

(3.3 ) 

where m represents the mass, 1 is the NUT parameter, e and g 
are, correspondingly, the electric and magnetic charges, a 
and b are "kinematical" parameters related to the choice of 
the coordinate chart (by shifting the coordinate p one can 
cancel out the parameter b), and K is a free parameter, which 
can be considered to assume the discrete values (1,0, - 1). 

The function/amounts to 

- / = A -l{ P 2(q2 + f2)2p_ (a - 2Plp)2Q} = :D lA, 

(3.4) 

where a and P are arbitrary parameters related with the 
Killing vector defined by Eq. (2.4), K p. = a8 ~ + P8 ~. 

The Ernst potentials 'C and rP, which determine the fac­
tor function ¢' and the new potentials ~ and ~ [see Eq. 
(2.11 ) ], are given by 

rP = - !(e + ig)/(q + i/»)[a - Pp(/ + iq) 1 (3.5) 

and 
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W =/ - 2v!:l-I[a(a - 2/3lp) + /32/:lJi] 

+ 2i{m [!:l-I/(a - 2//3p)2 + 3/3p(a - /3lp)] 

- Kq[a21 + /3p(a - /3lp) (q2 - 3/ 2) ]!:l-I 

+ /3q(ab + a/3/) - 2v/3pq(a - 2/3lp)}. (3.6) 

For simplicity, we have omitted here the additive con­
stants ifJo and W 0; one can include them, remembering that if 
ifJ ..... ifJ(3.5) +ifJo, then W ..... W(3.6) -2~oifJ(3.5) + Wo, Wo 
= - ifJo~o - itJ. 

According to Eq. (2.13), the function Wamounts to 

W(E,B la, /3) = W(a,ala, /3) + fl(E,B la, /3) + Wo, 

(3.7) 

where 

W(a,ala, /3) = (D -1/(a2 + /3 2»)[a{3(q2 + 12)2p 

Wo= const, 

and 

+ (a - 2/3lp) (/3 + 2alp)Q], (3.8) 

Dfl(E,B la, /3) = 4/3E( + )q!:lP + 2E( - )[ /3IP + (a - 2/3lp)pQ] + 1215v/3 [a!:lP + (a - 2/3lp)p2Q] 

+ 415/3E( + ){mp2(a - 2/3lp) (2a - /3lp)p2Q + !:l[a2(2m - Kq) + 2a/3blq + a/3 2q(/Z _ q2)]P 

+ q[2(a - 2/3lp) (a - /31p) - /3 2pZ!:l]PQ} + 4I5E( - ){(a - 2/3lp) [2v/3 Zp2 

- K(a - 2/3lp)(a - /3lp) ]pQ + /3!:l[a2KI- 2/3(ab + a/3/)qZ]P 

+/3 [(a - 2/3/p)z + 3Ma -/3/p)p]PQ} + 152
{ d P+ .%'Q+ JY PQ}, 

d = /3!:l{a3[~/2 + (2m - Kq)2] + Sa/3/(ab + a/3/) (m - Kq)q + 4!:l[b/3 2(ab + a/3l)q - aa/32m ]q}, 

.%' = 2(a - 2/3lp){18/3m2p2(a - /3lp) 2 + 2v/3 3p4 - ~/p(a - 2/3/p)3 - 2/3p(a - 2/3lp) [a(KV + ~/Z + 6m2 )p 

+ /31(2v - K/Z) (a + bp) - /3/p2(4mZ + 2VK + ~/2) n, (3.9) 

JY = /3(a - 2/31p) {4va(a - 2/3lp) - 2(a - 2/3lp)2Q + /3!:lZP + 4q[a2m + a/3l(bq - Kpq + 2mp) 

+ /32/ Z(aq + KpZq - 2mpZ)] + 4/3Zp!:l{a2KI + a/3(3vp - 2KfZp - 3mpq - 2bq2 + KpqZ) 

+ /3 21 [a(lZ - qZ) + bp!:l + pZ(KIZ - 4v + 2mq - Ki) n, 

where 

E( +) =Ee+Bg and E( -) =Eg-Be. (3.10) 

The magnetized MC-B( + ) metric is endowed with the 
set of parameters 

~ = {m,l,K,a,b,e,g,E,B,a, /3}. (3.11 ) 

Without any loss of generality the parameter b can be 
assumed to be zero, and K can be assumed to be equal to the 
discrete values {I ,a, - l}. 

Since the "seed" Carter-Be + ) metric contains as a spe­
cial case for 1 = a the Reissner-Nordstrom metric RN ( + ), 
the MC-B( +) solution described above contains, for 1 
equal to zero, the magnetized RN ( + ) metric, MRN ( + ) 
for short. In particular, for 

~ = {m,a, 1, l,a,e,a,a,B,a, l}, 

one obtains a solution due to Ernst.9 

IV. MAGNETIZED CARTER-B( -) METRIC 

(3.12) 

By applying the previously used magnetizing process to 
the Carter-Be -) metric, one generates the magnetized 
Carter-Be -) solution [MC-B( - )]. However, one ar­
rives at the same result if one executes in the MC-B( + ) 
metric-understood as a complex solution of the complex 
Einstein-Maxwell equation--complex coordinate transfor-
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mations and complex redefinitions of constants in such a 
manner that the resulting (real cross-section) solution will 
have the correct signature ( + + + - ). Therefore the 
magnetized Carter-Be ± ) metrics can be thought of as two 
different real slices of the same complex Einstein-Maxwell 
structure. 

Executing in expressions (3.1)-(3.10), which deter­
mine the MC-B( + ) metric, the coordinate transformations 

p-q, q-p, T-i'T", a-ia 

and redefining the constants according to 

m- - n, 1-- - I, K-K, a--a, b--b, 

e- - ig, g--ie, E-E, B-B, a-ia, 

[P-.Q, Q ..... p, E( + ) ..... - iE( - ), 

E( - ) ..... iE( + )], 

(4.1) 

/3 ..... i/3, 
(4.2) 

one obtains the magnetized Carter-Be - ) solution charac­
terized by the set of constants 

~ = {n,I,K,a,b,e,g,E,B,a, {3}. (4.3) 

The explicit expression of the metric g, which can be 
very easily obtained according to the procedure outlined 
above, is not included in this text because of its length. 

The MC-B( - ) metric contains several subfamilies of 
solutions to the Einstein-Maxwell equations, among them 
(for I = a) the magnetic generalization ofthe anti-Reissner­
Nordstrom solution [MRN( - ) solution]. 
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V. THE MAGNETIZED CARTER-O OR BERTOTTI­
ROBINSON METRIC 

This class of solutions is determined by the metric g 
from (2.14) and the two-form w from (2.15), with the fol­
lowing set of structural functions: 

P = a + bp - 2Vp2, Q = h + kq + 2vq2, 2v: = e2 + gl, 

!:J. = 1, f=a2Q-fPP=D, 

tfJ = 1 - 2(E - iB)<I> - o'll, 0: = E2 + B2, 

rp = (e + ig)(aq + i{Jp) , 

'll =f - 2v(a2q2 + {J2p2) + ia{J(bq + kp), 

W= W(E,B la,{J) = Wi + D -In(E,B) + Wo, 

a{J (P+ Q) 
Wi = W(O,Ola, {J) = 2 2 Wo = const, 

a +{3 D 

fl(E,B) = - 4E( + ){JqP + 4E( - )apQ 

+ 120va{3( p2Q _ q2p) + 48aE( _ ) 

X [{32( pPQ + bq2p + 2Vp3Q) - a 2hpQ] 

+ 48{JE( + ) [a2(qPQ + kp2Q - 2vq3p) 

- {J2aqP] + 82a{J{a2(h + kq)2p 

+ {32(a + bp)2Q + a 2(k 2p2 - 2bhp - ah)Q 

+ {32(b 2q2 - 2ak - ah)P}, 

E( + ): Ee + Bg, E( - ): = Eg - Be, (5.1 ) 

where 

CtJ = {a,b,h,k,e,g,E,B,a, {3} 

are arbitrary constants. Without any loss of generality, the 
parameters band k can be equated to zero. 

This metric, for vanishing charges e and g, degenerates 
into a magnetic subclass of solutions-magnetized flat 
space-time metric (MF)-which contains as a particular 
case the Melvin magnetic universe. In fact, the metric 
(2.14), with structural functions from (5.1) specialized to 
the values 

CtJ = {a = 0, b = 4, h = 1, k = 0, E = 0, B = Bo/4, 

a=O,{3=l}, 

are subjected to the coordinate transformations 

p = p2, q = z, r = T, 0' = ~ rp, 
which reduces to the Melvin metric.4 

VI. LIMITING TRANSITIONS 

A limiting transition of a given metric structure (g,w) 
consists in taking its limit with respect to a contraction pa­
rameter E when the coordinates are subjected to transforma­
tions depending on new coordinates and the parameter E, 

xl' = xl'(X'I',E), and simultaneously the constants CtJ 
(which characterize the studied structure) are replaced by 
functions of new constants and the contraction parameter E, 

CtJ = CtJ (~' ,~). If there exists a finite limit, limE_o (g,w) 
= (g',w'), this limit represents some solution. Notice that 
this process does not require finiteness of alllimE_o CtJ (~) or 
limE_OX I'(X'I',E). 
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The purpose of this section is to show that the Me­
B( ± ) solutions can be derived from the MC-A metric via 
corresponding limiting transitions. From the MC-B( ± ) 
metrics, by letting the parameter / tend to zero, one arrives at 
the MRN ( ± ) solutions. Accomplishing limiting transi­
tions in the MRN ( ± ) metrics one obtains the MBR solu­
tion (without the cosmological constant), which degener­
ates, by equating to zero the "proper" charges, into the MF 
metric, In this way, one establishes the limiting transition 
scheme given in Sec. I. 

It should be noticed that all these solutions [MC-A, 
MC-B( ± ), MRN( ± ), MBR, and MF) to the Einstein­
Maxwell equations arise as particular branches of solutions 
from the canonical metric structure 

g = ItfJI2{(!:J./P)dp2 + (!:J./Q)dq2 

+ f-1PQ( {J dr - a dU)2} - ItfJl-:rx2
, 

- w = d¢ t\ .1'+ • (d¢ t\ X), 
(6.1 ) 

a dr + {J dO' x: = - 2 2 + W(E,B la, {3)( {3 dr - a dO') , 
a +{J 

for specific (to each branch) structural functions tfJ, rp, 'll, f, 
P, Q, !:J., and W(E,B la, {3). 

In the general case with a and {J different from zero, we 
found that it is more easy to accomplish limiting transitions 
from an alternative form of the metric structure (5.1) con­
cerned with a new representation of the metric termx. Rep­
resenting the constants Wo in W(E,B la, {J) as 

a 1 a 1 
Wo--+ Wo + Ii a2 + {32 -Ii a2 + {32 ' (6.2) 

the X acquires the form 

dO' 
X = - p + W(E,B la,{J)( {J dr - a du), (6.3) 

with W(E,B la, {3) differing from the previous one in the 
W(O,Ola, {3) term; now this term should be replaced by 

a 1 
W(O,Ola, {3} --+ W(O,Ola, {3) -Ii a2 + {32 C 6.4) 

For the MC-A metric, the W(O,Ola, {J) function, modi­
fied according to (6.4), is given by 

W(O,O\a, {3) = - (1/{3D)[PCa + {3q2) - Q(a - {3p2)] 

(6.5) 

[with P and Q from (2.3) and D from (2.6) ], while for the 
MC-B( + ) metric the modified W(O,Ola, {J) is 

W(O,Ola, {3) = (1/{3D)(a - 2{Jlp)Q (6.6) 

[withQ from (3.3) andD from (3.4)]. 
Accomplishing the MC-A metric in [with X from (6.3), 

and W(O,Ola, {J) from (6.5)] the coordinate transforma­
tions 

p ...... /+p, q ...... q, r ...... r+1 2E- 1U, U ...... E-1U, (6.7) 

accompanied by the redefinitions 

m ...... m, n ...... Kl+bE, K--+K, r--+v-K[2-2Ebl+a~, 

e-+e, g-+g, E-+E, B-+B, E-+E + 12E-I{J, (6.8) 

{J-+{3E- 1, 
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and assigning to ifJo, E, and Wo the values 

ifJo = F + iG--+ - ifJl(e + ig)E- 1, 

E--+2mfJl(3a + 2fJI 2E- 1)E- 1, 

Wo --+ WoE-I, 

one observes that 

(6.9) 

lim {E- 2P,Q,6.,D,J,ifJ,'f/ ,I{I,E- 1 W(E,B la, fJ)}MC-A 
<-0 (6.10) 

= {P,Q,6.,D,J,ifJ, 'f/ ,I{I, W(E,B la, fJ) }MC-B( + )' 

which implies that the MC-A metric in the limit E--+O re­
duces just to the MC-B( + ) metric. 

In a similar manner one obtains the MC-B( - ) solu­
tion as limiting transition of the MC-A metric. The explicit 
form of the coordinate transformations and redefinitions of 
the constants can be derived by executing the formal com­
plex transformations quoted in Sec. IV. 

As it was mentioned in Sec. III by canceling out the 
parameter I in the MC-B( + ) solution one arrives at the 
MRN ( + ) metric, which now we shall use in its formula­
tion with X from (6.3), W(O,Ola, fJ) given by 

W(O,Ola,fJ) = (alfJ)(QID), (6.11) 

and the parameter b equated to zero. Now, let us subject the 
coordinate in MRN ( + ) to the transformations 

P--+P, q--+ 1 + Eq, r--+E-1r, <7-<7, 

accompanied by 
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(6.12) 

0--+0, m--+2v - c(h 12), K--+2v, e--+e, g--+g, 

E--+E, B--+B, a--+E-1a, fJ--+fJ, (6.13) 

F--+eaE- 2
, G--+agE- 2

, E--+O. 

In the limit E --+ ° one has 

lim {P,QE- 2,6.,D,J,I{I,'f/,ifJ,E- 1, W(E,B la, fJ)}MRN( + ) 
<-0 

= {P,Q,6.,D,J,I{I,'f/,ifJ,W(E,B la ,fJ)}MBR' (6.14) 

and consequently the MRN ( + ) metric becomes the MBR 
solution. 

Starting from the MNR ( - ) metric, by a similar transi­
tion process, one obtains the MBR metric. 
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This paper deals with fluid space-times within the framework of general relativity and subject 
to a metric symmetry (self-similarity and conformal or conformal collineation). Via the 
investigation of the kinematic properties of such fluids, it is shown that the conformal 
collineation symmetry plays the important role of smooth transition at the boundary of a 
change in the fluid pattern (such as shear-free and isotropic to distorted fluids). As 
applications, it is shown that the study is relevant to the radiationlike viscous fluid Friedman­
Robertson-Walker model, with the conformal collineation symmetry vector parallel to its 
tilted velocity vector. Also, the results lead to physically significant material curves (a curve 
that moves with the fluid as the fluid evolves) in the fluid. 

I. INTRODUCTION 

According to the theory of general relativity, the Ein­
stein field equations for a space-time manifold are 

Rab - !Rgab = 81TGC- 4 Tab (a,b = 0, ... ,3), (1.1) 

where R ab , R, and Tab are the Ricci tensor (computed from 
the metric tensor gab)' the scalar curvature, and the matter 
tensor, respectively; G is the Newtonian constant of gravita­
tion; and c is the velocity of light. Here Tab is subject to the 
conservation law 

( 1.2) 

where the semicolon denotes the covariant derivative with 
respect to gab' 

The basic problem of relativistic fluids is the study of 
fluid space-times subject to certain physically meaningful 
prescribed matter tensors. To illustrate this point, we consid­
er the case of a thermodynamic perfect fluid for which the 
matter tensor is prescribed byl-3 

(1.3 ) 

where ua (uaua = - c2
), fl, and p are the fluid four-velocity 

vector, the density, and the pressure, respectively. The fluid 
is specified by a barotropic equation of state p = p (fl), fl > 0, 
and p ~ 0. The continuity equation is 

(1.4 ) 

If the only matter creating the gravitational field is the 
fluid whose motion is to be studied, then we call this the 
"self-attracting problem," for which the unknown functions 
are ten components of gab' three independent components of 
ua

, and the two scalarsfl, p satisfying Eqs. (1.1 )-( 1.4). This 
problem has been solved in a variety of ways. For example, 
Taub l has shown that for irrotational (vorticity zero) and 
isentropic (constant entropy) flows, one can choose a simple 
comoving coordinate system in which the matter tensor de­
pends on g44 only. Therefore, the field equations involve a 
single set of dependent variables, which simplifies the prob­
lem; see, also, Refs. 2 and 3. 

Since the Einstein field equations are a complicated set 
of nonlinear partial differential equations (PDE's), one of 
the most widely used techniques (to simplify the problem) is 
to impose some metric symmetry. For example, plane, cylin-

drical, or spherical symmetries reduce from ten to three non­
zero components of gab' Well-known physical models are the 
Schwarzschild and Friedman space-times.4 

The objective of this paper is to present a few fresh ideas 
on the role of metric symmetries in the study of fluid space­
times. The main emphasis is on the use of a symmetry called 
conformal collineation, 5-8 particularly in dealing with a mix­
ture of fluids and/or a sudden change in the fluid pattern 
(such as non viscous to viscous flows). We also discuss some 
applications in relativistic fluids. 

The space-time manifold will be denoted by (M,g) , 
where g is the Lorentz metric of signature ( - + + + ). 
All structures on M will be assumed smooth. 

In Sec. II we review the relevant aspects of self-similar­
ity and conformal symmetry and state their limited use in the 
study of fluids. In Sec. III we discuss the kinematics of con­
formal collineation symmetry,5-8 which takes over when the 
conformal symmetry breaks and shear appears: This causes 
distortion in the fluid. We show that non-null conformal 
collineations play the role of smooth transition at the bound­
ary of the shear-free and distorted regions: This is an exten­
sion of an earlier result8 for a timelike symmetry vector par­
allel to the four-velocity vector. Section IV is devoted to two 
applications. First, we show that our study is relevant to the 
radiationlike viscous fluid solution of the Friedman-Robert­
son-Walker (FR W) models, with the symmetry vector par­
allel to its tilted velocity vector and second, our results lead 
to physically significant material curves (a curve that moves 
with the fluid as the fluid moves). 

II. SELF-SIMILARITY AND CONFORMAL SYMMETRY 

A. Self-similarity 

Consider a space-time (M,g). We denote by 0 any phys­
ical field (such as metric, matter field, scalar, etc.) and use 
natural units so that G = c = 1. Let I be the unit of length. 
Each 0 can then be assigned a dimension q (usually an in­
teger) such that under the scale transformation 

I' = ekl, k = const, 

o transforms as 

0' = eQkO. 

(2.1) 

(2.2) 

1316 J. Math. Phys. 30 (6), June 1989 0022-2488/89/061316-07$02.50 © 1989 American Institute of Physics 1316 



                                                                                                                                    

Since any two physical fields are related by the raising or 
lowering of the indices with the metric tensor g, it is always 
better to let g carry the dimension. Thus if we choose q = 2 
for g, then q = I and 0 for the space-time interval ds and the 
coordinates xu, respectively. 

Definition: If there exists a smooth map M --M such that 
the metric g transforms under a constant scale factor, i.e., 

(2.3) 

then (M,g) is called a self-similar space-time.9 

Therefore, it follows that the geometry and physics at 
different points of a region (where self-similarity holds) of a 
space-time differ only by a change in the overall length scale. 

The research on self-similarity in continuum mechanics 
has its roots in a classical procedure which reduces the 
PDE's (which characterize a given problem) into ordinary 
differential equations. Precisely, one assumes a specific form 
for the solution in which the dependent variables are func­
tions of a single independent variable. For example, in a 
spherical symmetric problem where the independent vari­
ables are a distance from the center of symmetry r and the 
time t, the dependent variables are assumed to be essentially 
functions of the variable z. 

Cahil and Taub lO first formulated the relativistic ver­
sion of self-similar solutions of classical hydrodynamics, fol­
lowed by several others. II

-
16 In general, self-similarity has 

been extensively studied in several related areas. As exam­
ples, see Eardley9 for the geometry and dynamics and 
Weinwright l7 for the cosmology of self-similarity. 

To understand the primary role of this symmetry in the 
study of fluids, we consider two regions of the space-time 
such that a similarity is described in the first region defined 
by a single variable z: Zo ::;; Z::;; Z I' where ZO, Z 1 are constants. 
Then the dividing boundary of the two regions is given by the 
hypersurface Z = Z I' The values of the physical fields on the 
hypersurface will provide the initial data to be filled in the 
field equations: One then finds that the nature of the initial 
data generates a unique solution to the field equations. 

The basic problem is the fitting 0/ the similarity solution 
0/ the first region with that 0/ a known solution in the second 
region with the possibility o/retaining self-similarity. For ex­
ample, all static solutions retain self-similarity. 10 

However, only the simplest kinds of matter (e.g., perfect 
fluid, gas, electromagnetic fields, and dust) are allowed to 
retain self-similarity between two regions. Even a mixture of 
these are generally disallowed since the boundary of a region 
where one component of the mixture dominates another 
would define an intrinsic scale, spoiling self-similarity. In 
view of this negative phenomenon, one must seek other 
methods for maintaining the continuity of the fluid matter 
when the self-similarity breaks. For this purpose, we now 
discuss another known technique. 

B. Conformal symmetry 

If there exists a map M --M such that the metric g trans­
forms under the rule 

(2.4 ) 

then M is said to have conformal symmetry. 18 Two subcases 
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are self-similarity (ifJ = nonzero constant) and isometry 
(ifJ = 0). Equation (2.4) implies the existence of a one-pa­
rameter group of conformal motions generated by a confor­
mal Killing vector field S such that 

Lsgob = Sa;b + 5b;0 = 2ifJgab' (2.5) 

where L is the Lie-derivative operator. 
Example: Consider the Einstein static fluid space-time 

d:l = - dt 2 + (1- r)-I dr 2 + r2(d(j2 + sin2 o difJ2) , 

with the fluid four-velocity vector Uo = 8g. This space-time 
admits a conformal Killing vector l9 

so= (l-r2)1/2cost8g -r(l-r2)1/2sint8~. 

For details on properties of conformal motions see Yano. 18 

Since the celebrated work ofWeyl20 conformal symme­
try property has been an essential geometric prescription for 
a good part of physics. For example, all equations of massless 
particles,21 such as the graviton, are conformally invariant. 
Also, conformal invariance is the root of the twistor pro­
gram.22 However, the role of proper conformal symmetry in 
general relativity is limited to the following recent results. 

1. Garfinkle and Tian23 

Let (M,g) be a solution of the vacuum Einstein equa­
tions with the nonzero cosmological constant A. Let S be a 
proper conformal vector field of M. Then (M,g) is locally 
isometric to de Sitter (anti-de Sitter) space-time if A is 
>O( <0). 

2. Garfinkle24 

A space-time that is asymptotically Minkowskian, 
vacuum, and has positive Bondy energy does not admit any 
conformal vector field which is not a Killing vector field. 

3. Eardleyetal.25 

Eardley et al. 25 examined restrictions on space-times via 
the existence of a conformal vector field for various forms of 
the stress-energy tensor, with various assumptions about 
global structure. The theorems support strong indications 
that proper conformal symmetries have little role to play in 
general relativity and that homothetic (self-similar) symme­
tries are useful only for model space-times that are neither 
spatially compact nor asymptotically flat. 

On the other hand, for the study of fluids, conformal 
symmetry is useful. To illustrate this point, consider a simple 
example of a liquid that changes to gas when heated through 
its boiling point. When the pressure is raised, the transition 
becomes less and less abrupt until at a critical pressure it is 
continuous. However, at this critical point (the self-similar­
ity breaks) the density fluctuations occur at all length scales. 
It is a remarkable phenomenon of universality that most 
physical systems do respond in a natural way to the local 
conformal symmetry at those critical points. Thus confor­
mal symmetry measures the response of the fluid subject to 
large density fluctuations and describes the leading finite­
size correction to scaling at critical points. For example, it is 
known that conformal symmetry fits static spherical sym­
metric distribution of matter26,27 and in particular, viscous 
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fluid,28 to the exterior Schwarzschild metric. We observe 
that this fitting is not possible for self-similar symmetry. 

However, in general, the conformal symmetry breaks 
down as a result of the action of Ls on the Christoffel sym­
bols defined by 

( C) 1 d 
ab = 2~ [gbd.a + gad,b - gab.d]' (2.6) 

Lx (:b) = ~ gcd [(Lxgbd );a 

(2.7) 

Indeed, setting X = S, a conformal vector field, and substi­
tuting (2.5), we conclude that every conformal symmetry 
satisfying (2.5) must also satisfy 

LS(:b) = o~¢;c + O~¢>;b - gbc~d¢;d' (2.8) 

where o~ is the Kronecker tensor. This raises the following 
question: Does (2.8) pull back conformal symmetry? In 
general, the answer is negative. In fact, it can be easily seen 
[X=S in (2.7) ~(Lsgab-2¢gab);c=0¢(2.9)] that 
(2.8) is equivalent to 

(2.9) 

where Kab is a symmetric, covariant constant (and therefore 
a Killing tensor) associated with S. For basic information on 
Killing tensors and their use in physics, see the Appendix. 

Based on the above, in Sec. III we discuss a higher sym­
metry which takes over when the conformal symmetry 
breaks. 

III. CONFORMAL COLLINEATIONS: KINEMATIC 
RESULTS 

A. Conformal collineations 

A space-time (M,g) admits a symmetry called "confor­
mal collineation, .. 5-8 generated by an affine conformal vec­
tor (ACV) field Sif (2.8), or equivalently, (2.9) holds. Sub­
cases are conformal symmetry (Kab = AgabA = const) and 
affine collineation (¢ = const), which further includes self­
similarity and isometry. In this paper, Kab will be called a 
conformal Killing tensor (CKT). A special ACV is charac­
terized by (2.9), together with 

¢;ab = O. (3.1) 

A proper ACV (Kab #gab' ¢ = nonconst) cannot exist 
in the general case. For example, it is known29 that nonflat 
spaces of constant curvature do not admit a proper ACV 
since they admit only one CKT Kab = gab' 

On the existence of this symmetry, Katzin et al. 30 have 
shown that a nonflat conformally flat space C n (n > 3) admits 
a proper ACV such that 

Kab = BRab , B = nonzero scalar. (3.2) 

This means (in view of Kab;c = 0) that Cn' with a proper 
ACV, is Ricci recurrent.31 Denoting this class of space by 
C~, it was further proved30 that C~ is reducible (irreduci­
ble) iff it is symmetric (R = O~K~ =0). 

If a reducible M admits a proper ACV S, then it is neces­
sarily a combination of a proper affine collineation vector 
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and a proper conformal vector. Mason and Maartens32 dis­
played the following example for the Einstein static fluid 
space-time: 

ds'l = - dt 2 + (1- r)-I dr + r(d0 2 + sin2 Od¢2), 

with the fluid four-velocity vector ua = og. This space-time 
admits a proper conformal vector 

S~ = (l-r)I/2costog -r(l-r)1/2sinto~ 

and a proper affine collineation vector S ~ = tog. Thus a 
combination Sa = S ~ + S ~ is a proper ACV such that 

sa= [t+ (l-r)I/2cos t ]og -r(l-r)1/2sinto~, 
¢= -(1-r)1/2sint, Kab= -2t,at,b' (3,3) 

In general, for an ACV S, the following identities hold 
(the proof is similar to results on conformal symmetry; see 
Yano I8 ): 

LsR ~bc = O~¢c;b + ot¢a;c - ¢~gbc + ¢~gac' 
LsRab = (O¢)gab - 2¢;ab' 

LsR = 60¢ - 2¢R - R', 

LsC~bc = HgbcK::'R;;' - gacK::'R;;' 

(3.4a) 

(3.4b) 

(3.4c) 

- Kbc R ~ + KacR %] + (R 16) [KbcO~ 

- Kaco%] - (R '/6>[gbco~ - gac o%] , 

(3.4d) 

where C~bc is the Weyl curvature tensor of M and 

O¢=~b¢.ab' R '=K~R~. (3.5) 

Observe that in general, for an ACV, LsC~bC #0. How­
ever, any affine collineation implies LsR ~bc = O. Also, con­
formal symmetry implies LsC~bc = O. 

Using the identities (3.4), it is easy to show that a proper 
Einstein space [Rab = (RI4)gab,R #0] admits a proper 
ACV, with 

Kab =~(kI4) -¢)gab - (8IR)¢;ab' K=K~. (3.6) 

It is notable that an affine collineation (¢ = nonzero 
const) in a proper Einstein space reduces to a full isometry 
(the proof is easy). 

A complete analysis on the existence of ACV's still re­
mains open for indefinite manifolds (for positive definite 
manifolds this problem was solved by Tshairo5). 

In view of the above information, we postulate the fol­
lowing prescription for Kab 

Kab = Agab - BRab + C¢;ab' (3.7) 

where A, B, and C are suitable scalars such that Kab;c = O. In 
the following we show the motivation for this choice. The 
choice holds for a proper Einstein space with 
A = j(K 14) - ¢), B = 0, and C = - 81R, Also, nonflat 
conformally flat spaces [see Eq. (3.2)] can admit this pre­
scription for A = 0 and [C = 0 or ¢;ab = 0]. Finally, this 
choice is applicable to a variety of physical problems in rela­
tivistic fluids (we discuss this in Sec. IV.) 
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B. Kinematic results 

Equation (2.9) may be rewritten as 

S(b;a) = 2tPgab + K ab • K[ab] = 0 = Kab;e' (3.8) 

A decomposition of Sa;b into its symmetric and skew-sym­
metric parts and the use of (3.8) provides 

Sa;b = tPgab + Fab + !Kab' 

where Fis such that 

(3.9) 

Fab = S[a;b]' (3.10) 

A bivector satisfying (3.10) will be called a conformal 
collineation bivector. This terminology follows that of the 
homothetic bivector of McIntosh.33 

Suppose S is a non-null ACV. Then, it is useful to discuss 
the kinematic quantities (shear, expansion, and vorticity) of 
S. A thorough discussion on kinematics may be found in any 
standard text on cosmology, e.g., Ellis,34 whose notations 
will be followed (both for timelike and spacelike s). We 
form the projection tensor h, with the components 

hab = gab -Ea2Sas b (3.11) 

such that habs b = 0 and s·s = W
2(E = + I or - I for 

spacelike or timelike S and a > 0 is a real scalar). 
The following results on conformal symmetry are 

known.35,36 

Theorem 1: A space-time admits a timelike (spacelike) 
conformal motion with the symmetry vector S 1I,u(s lin) iffit 
is shear-free, where U' n = 0 and n' n = 1. 

For an ACV, we have the following corresponding re­
sult. 

Theorem 2: A space-time admits a non-null ACV field 
s(s·s = w 2

, E = ± I, and a> 0) iff 

(Ted = (2a)-I[h~h~ -jhabhed]Kab' 

(J = a-I [3tP + !h abKab ], 

(3.12a) 

(3.12b) 

where (Tab and (J are the shear tensor and the expansion of S. 
Proof Consider the tensor Vab (which represents the 

relative velocities of neighboring particles) expressed by 

V -h h /:e;d_(} + ab - ae bd!:> - ab Wab , 

where (Jab and Wab are the expansion and vorticity tensors. 
Using S e;d = ¢g<d + Fed + !K cd, we obtain 

(Jab = (J(ab) = (Tab + j(Jhab 

= !haehbdKed + ¢hab' (3.13) 

Contracting (3.13) with ~b and using ~b (T ab = 0, we obtain 
(3.12b). Substituting (3.12b) in (3.13) and lowering/rais­
ing some indices we obtain (3.12a). Conversely, assuming 
Eqs. (3.12) hold for some CKT K ab • one can show thatthere 
exists a non-null ACV sa. • 

Remark I: It is evident from Theorems 1 and 2 that at 
the breaking point of the conformal symmetry (Kab =l=gab)' 
shear that causes distortion in the fluid appears. This change 
in the fluid pattern is governed by the deviation of the CKT 
Kab from the metric tensor gab' For example, the fluid will be 
shear-free (Theorem 1) when Kab = Agab (no deviation). 
Our result (Theorem 2) is consistent with a remark of Col­
lins37

: "Shear-free perfect-fluid solutions might also be of 
interest as asymptotic states of space-times in which the flow 
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is not shear-free." Indeed, (Tab ...... O iff Kab .... Agab . 

Conclusion 1: The conformal collineation symmetry 
therefore plays the role of smooth transition between the 
shear-free and distorted regions. 

For a physical feeling of this natural phenomenon, con­
sider a simple case of distortion ( (Tab =1= 0) with no change in 
volume. Then, if the fluid is at one instant (with conformal 
symmetry) a spherical ball, a short while later (when the 
conformal collineation symmetry takes over) it will change 
to an ellipsoid of the same volume. 

Now we are ready to discuss some applications of 
Theorem 2 based on a suitable prescription for K ab . 

IV. APPLICATIONS 

We consider the following general form of the energy 
momentum tensor of a fluid34

: 

(4.1 ) 

where,u, p, qa, and 1T"b are the density, thermodynamic pres­
sure, energy flux vector, and anisotropic pressure tensor, re­
spectively (qaua = 0, 1TabUb = 0, ~ = 0). Let the field 
equations be (here we set 81TG = I) 

(4.2) 

Suppose there exists a conformal collineation symmetry 
defined by Eq. (2.9): This symmetry will in general have 
unreasonable physical properties unless the CKT Kab has 
some physically meaningful prescription. Based on postu­
late (3.11), we set 

(4.3 ) 

The general case (when C =1=0) will be discussed in another 
paper. Since we are investigating fluid-filled spaces for which 
Rab =1= gab , the choice of (4.3) (which is not unique) is suit­
able for a proper (Kab =l=gab) ACV. Moreover, C = 0 will 
not restrict our discussion to a special ACV for which 
tP;ab = o. 

A. Viscous fluids 

The following relations will hold: 

Rab uaub = !(,u + 3pc- 2), Rab uoh ~ = - qe' (4.4) 

Rab h ~h ~ = (,u - pc-
2

)hed + 1Ted' 

where hab = gab + c- 2Ua Ub is the projection tensor. There­
fore, it follows from (3.11) that S is timelike such that 

Using (4.3) and (4.4) in (3.12a), we obtain 

1Tab = - (2aIB)(Tab' 

( 4.5) 

(4.6) 

It is known that a particular case of anisotropic fluid is 
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viscous fluids,34,38-42 characterized by (4.1) and (4.6), 
where the kinematical viscosity coefficient rJ is 

rJ = 2a/B> 0, a = (€S·S) 1/2 > O. 

Thus we have established the relativistic equivalence to 
the Navier-Stokes theory of Newtonian fluid mechanics.39 

Example: Consider FR W models 

ds2 = -c2dt 2+S2(t)[(1-k1:Z.)-ldr 

+ r(dfJ 2 + sin2 fJ d¢i)], 

where t, S(t), and k(O or ± 1) are the cosmic time, scalar 
function, and curvature constant, respectively. Introducing 
the dimensionless function €(t) = p/J-lC2, one can find var­
ious FRW models by prescribing €(t). For example, 
€ = const recovers the standard FR W models and € -+ j as 
t --+ 0 and € -+ 0 as t -+ 00 are the radiation like models (repre­
senting the epoch near the initial singularity for small t) and 
dustlike models [the ultimate (including present) stage of 
the universe for large t]. The interest in such models has its 
roots in the discovery of the cosmic microwave back­
ground.43,44 

Related to the present paper, Coley and Tupper42 have 
recently proved that FRW models with k = 0 (flat geome­
try) can be exact solutions for a viscous fluid (with or with­
out an electromagnetic field). Consider Coley and Tupper's 
radiationlike viscous fluid solution with Set) = t /2 and the 
tilting velocity vector 

u = (2c/t) [cosh ¢> at + sinh ¢> Jr ], (4.7) 

where ¢>(t,r) is the hyperbolic tilt angle. The shear tensor is 

where (J = (J( t,r) is the magnitude of (Jab' n = (2! t) r is the 
unit radial vector, and 

Relating the above example with the ACV data of this paper, 
we observe that since FRW models are conformally flat, it 
follows from Eq. (3.2) and the constant scalar curvature R 
that B is constant. Therefore, using (4.5) and (4.7), we ob­
tain 

sa = (at /2c)ua, rJ = (a/B), B = nonzero const. 
( 4.8) 

Discussion: The tilt of the matter velocity field relative to 
the radiation field causes turbulence which drives the viscos­
ity to high magnitude, Attempts have been made to obtain 
the upper limit on the viscosity (for example, see Goicoe­
chea and Sauz45 for FR W models with k = 0 and a homoge­
neous velocity field). By (4.8), it follows that the viscosity 
coefficient rJ is constantly related to the magnitude a of the 
ACVs· 

Conclusion 2: By adjusting the magnitude of its ACV S, 
conformal collineation symmetry may be used to measure 
the response of viscous fluid subject to large viscosity fluctu­
ations in order to describe the leading finite-size correction 
to scaling. 
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In general, viscous fluids are of great interest in explain­
ing the relativistic dissipative processes in situations near the 
thermodynamic equilibrium38 and have been used to de­
scribe neutron stars in certain density ranges.46 

B. Material curves 

A material curve in a fluid is a curve that moves with the 
fluid as the fluid evolves (this is also known as the "frozen 
in" curve to the fluid). For instance, if an observer comoving 
with the fluid can be chosen at anyone point, then a comov­
ing observer can be employed at any other point along a 
spacelike congruence in the fluid iff the curves of the con­
gruence are material curves in the fluid. 

The interest in material curves has its roots in the theory 
of spacelike congruences first formulated by Greenberg47: 
This theory plays an important role in relativistic fluid dy­
namics and relativistic electrodynamics of continuous me­
dia. 

We show that non-null ACV's lead to physically signifi­
cant material curves in fluid space-times. Our results agree 
with known results on conformal motions. For this, we need 
the following. The effect of an ACV on any non-null unit 
vector X a is6 

Lsxa = - [if> + (€/2)KbcX bxc]xa + ya, 

LsXa = [if> - (€/2)Kbc XbXc ]Xa + KabX b + Ya, 
(4.9) 

where ya is some vector orthogonal to xa. In general, 
ya#o: See Ref. 6 for an explicit example of an ACV with 
ya#o. In particular, for a fluid four-velocity vector ua, we 
obtain 

L ua- _(A._!K ubuc)ua+va 
S - 'I' 2 bc , 

(4. lOa) 
Lsua = (if> + !KbcubuC)ua + Kab Ub + Va' 

where V'U = O. By (4.10), it follows that the integral curves 
of an ACV S a are material curves iff va = O. This means that 

Lsua = - (if> - !Kbcubuc)ua. (4.lOb) 

For further analysis, we decompose Sa = /3ua + ya, where 
/3 = - uas a and yaua = O. The following kinematic result 
is known34: 

Ua;b = (Jab + jfJhab + Wab - UaUb, 

where we set the velocity oflight c = 1. Using this result, we 
obtain 

Lsua =/Jua +/3[ua + (log/3-I);b] 

+ yb(UaUb + 2wab )· 

Equating the above result with (4.10a) and then contracting 
with ua provides t/J = i3 + itasa + !Kabuaub.Finally, elimi­
nating if>, we obtain 

Va = 2WabSb + /3 [ita + (log/3 -I) ;bh ba ] 

(4.11 ) 

For an ACV S with Kab satisfying (4.3), the following 
holds [here we use Eq. (4.4) for c = 1]: 

(KbcUbUC)ua + Kabub = O. ( 4.12) 

Therefore, Eq. (4.11) reduces to 
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(4.13 ) 

Remark 2: It is evident from (4.13) that the relation 
between va and the kinematic quantities is independent of 
Kab • This means that the properties of material curves 
(when va = 0) forbid the influence of Kab if Kab satisfies 
(4.3). Based on this, in particular, the following relevant 
results on spacelike congruences and non-null conformal 
symmetry will also hold for conformal collineation symme­
try. 

Theorem 3: If a unit tangent vector na to any spacelike 
congruence is everywhere orthogonal to the four-velocity 
vector field ua of a self-gravitating fluid, then comoving ob­
servers can be employed all along a curve of the congruence 
iff the curves are material curves in the fluid (Tsamparlis 
and Mason48 ). 

Theorem 4: If a rotational fluid (cu#O) space-time ad­
mits a timelike conformal vector S iiu, then the vortex lines 
are material curves in the fluid (Ehlers et al.49

). 

Theorem 5: Suppose a fluid space-time admits a space­
like conformal vector S lin, where no n = I and U' n = O. 

(i) If the fluid is irrotational (cu = 0), then the integral 
curves of n must be the material curves in the fluid. 

(ii) If the vorticity of the fluid is nonzero (cu#O), then 
the integral curves of n are material curves in the fluid iff 
they are vortex lines (Mason and Tsamparlis36

). 

Conclusion 3: If its CKT Kab is prescribed by Eq. (4.3), 
conformal collineation symmetry may be useful to retain the 
properties of material curves under a change in fluid pattern 
when the conformal symmetry breaks. 

v. CONCLUDING REMARKS 

We have seen that metric symmetries (discussed within 
the scope of the present paper) are useful in the study of fluid 
space-times. This discussion indicates several topics for 
further investigation. The results may be used to derive gen­
eral properties of non-null conformal collineations. This 
may be extended to null conformal collineations, for which 
the relevant kinematic quantities can be defined in a manner 
similar to that outlined in the present work. Finally, it is 
hoped that the present investigation, together with earlier 
works,6-8 will help stimulate further research on this topic. 
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APPENDIX: KILLING TENSORS 

A vector K is called a Killing vector if 

K(a;c) = !(Ka;c + Kc;a) = O. (AI) 

As a generalization of Killing vectors, a Killing tensor of 
order m is a symmetric tensor K a , , ••• ,am which satisfies 

(A2) 

Within the scope of this paper, we are interested in Killing 
tensors of order 2, which in accordance with (6.2) obey 
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K 1ab J = 0 = K(ab;c)' (A3) 

Trivial examples of a Killing tensor are the metric ten­
sor gab; all products Kab = U(aVb) of the Killing vectors 
Ua , Vb (not necessarily different); and linear combinations 
of these with constant coefficients. Killing tensors that do 
not admit this type of representation are referred to as non­
trivial. 

From the point of view of physics, interest in the Killing 
tensors originated in their connection with the separability 
of various POE's e.g., the Hamilton-Jacobi equation. For 
further details regarding this connection, we refer the reader 
to Refs. 50-55. 

In reference to the existence of Killing tensors, we state 
the following open problems: (i) find all Killing tensors of a 
given space-time and/or (ii) classify space-times with re­
spect to the nontrivial Killing tensors they admit. Neither 
problem has yet been solved, although some specific results 
are known. Here we only state one fundamental result 
(Hauser and Malhiot56

). A four-dimensional space-time ad­
mits at most 50 linearly independent Killing tensors of order 
2. The maximum number 50 is attained iff the space-time is 
of constant curvature, for which all 50 Killing tensors are 
trivial. For the general study of Killing tensors we refer the 
reader to Refs. 57-60. 
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Expressions for the complete solution of the Rarita-Schwinger equation in terms of complex 
scalar potentials are obtained by means of Wald's method of adjoint operators. The 
background space-time is required to be an algebraically special solution of the Einstein 
vacuum field equations with cosmological constant or a solution of the Einstein-Maxwell 
equations such that one principal null direction of the electromagnetic field is geodetic and 
shear-free. 

I. INTRODUCTION 

The zero-rest-mass field equations on a curved space­
time constitute a highly involved system of differential equa­
tions because of the coupling between the various compo­
nents of the field and the background geometry. When the 
space-time is not (conformally) fiat, the usual zero-rest­
mass field equations for spins greater than 1 have nontrivial 
integrability conditions that restrict their solutions. In the 
case of a spin-2 field, these integrability conditions are iden­
tically satisfied if the field is identified with a gravitational 
perturbation. For spin-~ fields, consistent equations are ob­
tained by linearizing the supergravity field equations; how­
ever, the equations obtained in this way do vary depending 
on the presence of a cosmological constant or another field. 

In the case of the algebraically special vacuum space­
times, for the zero-rest-mass fields of spin!, 1, and 2, there 
exists a decoupled equation for a certain component of the 
field, I and the complete solution is expressible in terms of a 
single scalar potential that has to satisfy a wavelike equa­
tion.2

•
3 Decoupled equations have also been derived in the 

case of spin ~ when the background space-time satisfies the 
Einstein vacuum field equations without cosmological con­
stant4

•
5 and when it satisfies the Einstein-Maxwell equations 

with one of the principal null directions of the electromag­
netic field being geodetic and shear-free.6

•
7 Expressions for 

all the components of the field in terms of a complex poten­
tial have been obtained only for the case of vacuum without 
cosmological constant.5 

The solution of the decoupled equations derived from 
the zero-rest-mass field equations gives a component of the 
field only, which constitutes limited but useful information. I 
Nevertheless it turns out that in these cases, whenever there 
exists an appropriate decoupled equation, it is possible to 
express the complete solution in terms of scalar poten­
tials.3

•
8

-
IO The procedure to obtain these expressions and the 

equations for the potentials starting from the decoupled 
equations is essentially simple and is based on the concept of 
the adjoint of a linear differential operator. 

In the present paper, the equations for zero-rest-mass 
fields of spin ~ given by the linearized supergravity theory are 
reduced to a single wavelike equation by means of the meth­
od of adjoint operators, assuming that the background 
space-time is a solution of the Einstein vacuum field equa-

tions with cosmological constant, or a solution of the Ein­
stein-Maxwell equations such that one principal null direc­
tion of the electromagnetic field is geodetic and shear-free. 
In both cases we recover the expressions found by direct 
integration in Ref. 5, applicable to the case of a vacuum with­
out cosmological constant. 

In Sec. II, the method of adjoint operators, which allows 
the reduction of systems of homogeneous linear partial dif­
ferential equations to equations for potentials that determine 
the complete solution of the original system, is presented 
following Ref. 3. In Sec. III, from the linearized field equa­
tions of simple supergravity with cosmological constant II we 
obtain a decoupled equation for the spin-~ field, assuming 
that the background space-time is algebraically special, and 
then the expressions for all the components of the field in 
terms of a scalar (Debye) potential are obtained. In Sec. IV 
an analogous derivation is given, starting from the linearized 
field equations of the N = 2 extended supergravity l2 in the 
case of a background space-time that satisfies the Einstein­
Maxwell equations with one principal null direction of the 
electromagnetic field being geodetic and shear-free. The 
spinor formalism and the Newman-Penrose notation are 
used throughout, following Ref. 13. 

II. DECOUPLED EQUATIONS AND POTENTIALS 

Letf be a tensor or spinor field governed by a system of 
homogeneous linear partial differential equations that can be 
written in the form 

<if(f) = 0, (1) 

where <if is a linear differential operator that maps tensor or 
spinor fields like f into tensor or spinor fields, possibly of a 
type different from that off Examples of ( 1) are the Dirac 
equation, the source-free Maxwell equations, the Rarita­
Schwinger equation, and the linearized Einstein equations. 
By combining appropriately the equations in (1) and their 
derivatives, one may be able to obtain a decoupled equation 
of the form 

&'(x) =0, (2) 

where &' is a linear differential operator that maps scalar 
fields into scalar fields, and X is a function made out (linear­
ly) of the components off or their derivatives; the scalar field 
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X can then be expressed as X = :T ( f), where :T is another 
linear operator. The fact that Eq. (2) follows from Eq. ( 1) is 
equivalent to the existence of a linear operator Y such that 

Y'l/ = &:T (3) 

identically, so that when both sides of (3) are applied to a 
solutionf of Eq. (1), one gets the decoupled equation (2). 

If g is a field of the same type of 'l/ ( f), in such a way 
that the full contraction of g and 'l/ ( f), denoted by 
go'l/(f), yields a scalar field, then the adjoint of 'l/, 'l/t is 
defined as that linear operator such thae 

(4) 

for every pair of fields f and g of the required types, where sP 
is some vector field. It can be readily verified that (.ntt) t 
= .nt, (.nt + [!#) t = .ntt + [!#t, (.nt [!#) t = [!# t .ntt , and if 
h is a function, h t = h. Thus from Eq. (3) one gets the iden­
tity 

'l/tYt=:rt&t, (5) 

and therefore if t/J is a function that satisfies the equation 

&t(t/J) = 0, (6) 

then the field yt ( t/J) satisfies the equation 

(7) 

In particular, if 'l/ is self-adjoint or antiself-adjoint (i.e., 
'l/t = ± 'l/), then by virtue of (7), f = yt (t/J) is a solution 
of Eq. (1), provided that the potential function t/J obeys Eq. 
(6). 

If, instead of being a single field, f is an array of fields 
and, similarly, X has several components, then all the pre­
vious conclusions remain valid, with t/J being now an array of 
scalar potentials, provided that the contractions appearing 
in the definition (4) include sums over the components of 
the array in order for the left-hand side of Eq. (4) to be a 
scalar. 8-10 

III. SPIN--J PERTURBATIONS OF VACUUM 
BACKGROUNDS WITH COSMOLOGICAL CONSTANT 

The supergravity field equations reduce to the equations 
of general relativity when the spin-~ fields vanish (see, e.g., 
Ref. 14). If the supergravity field equations are linearized 
with respect to the spin-~ fields about a solution with vanish­
ing spin-~ fields, apart from the equations of general relativi­
ty with a torsion-free connection, a consistent set of equa­
tions for the spin-~ fields is obtained. In this way one finds the 
following equations for a spin-~ massless field in a back­
ground space-time that satisfies the Einstein vacuum field 
equations with cosmological constant I 1.14: 

where the real constant g must be related to the scalar curva­
ture through 

gZ = - A, (9) 

and ¢B'D'C = t/JBDC' ,which can be written in the equivalent 
form 
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H ABc = H(ABc) , HAB,c' =[), 

where 

HA BC =V(BIR'I ¢;t C) R' + igc4(B¢IR'1 R 'Cl' 

H A - V .1,tIR . J, A 
B'C' = R(B' 'f C') - 19'f(B'C') 

(0) 

01 ) 

(the round brackets denote symmetrization on the indices 
enclosed; the indices between bars are excluded from the 
symmetrization). These equations are invariant under the 
supersymmetry transformations 

(2) 

where a A is an arbitrary spinor field and iiA , = ~,pro­
vided that the traceless part of the Ricci tensor vanishes, 

cI> ABC'D' = 0, (3) 

and condition (9) is fulfilled. 
In order to obtain identities of the form (3) it is conven­

ient to introduce the spinor field 

JD'B'C=VAB,¢;tCD' - V CD ' ¢;tAB' - ig(2¢B'D'C - ¢D'B'C)' 
(14) 

where t/JABC' is not restricted by any condition; then t/JABC' 

satisfies Eq. (8) if and only if JD'B'C = O. From the defini­
tions (11) and (14) one finds that 

OS) 

and using the Ricci identities together with Eqs. (9) and 
(3), 

AR' .1,tIDR' S' R' . - R' V H ABc = 'II ABCD 'f + V (B J1s'l C) - 19J(BC) , 
(6) 

whereJBcR ' = JB'C'R . 

In order to express Eq. (8) as a system oflinear differen­
tial equations, we need to consider t/J ABC' and ¢ A 'B 'C as the 
unknowns; then Eq. (8) together with its complex conjugate 
can be written as 

'l/ [ ~ ABC' ] = 0, 
t/JA'B'C 

(7) 

where 

(8) 

with JA 'B'C defined by (4). This means that 'l/ is a 2 X 2 
matrix of linear operators, which turns out to be antiself­
adjoint. In fact, using the definition (14) one can easily see 
that for an arbitrary spinor field 4> ABC' , 

[4>ABC' ¢A'B'C]'l/[~ABC'] 
t/JA'B'C 

+ [¢;tBC' 'fi;A'B'C]'l/[!ABC'] 
4>A'B'C 

- V (A..D'B'C.I,tI _ A..B'D'A.I,C 
- AB' 'f 'f CD' 'f 'f CD' 

+ 4>CAD''fi;B'D'C - 4>ACB''fi;D'D'C)' (9) 

Taking 4> ABC' = t/J ABC" this last identity shows that if t/J ABC' 
satisfies Eq. (8), then there exists a divergenceless real vec-
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tor field made out of the spin-i field [which is equal to 
J.D'B'C.I.A J.JJ'D'A C 1 2(If' If' CD' - If' ¢ CD') . 

If JA 'B'C is equal to zero [i.e., if ¢ ABC' satisfies Eq. (8)], 
then the spinor field H ABC obeys an equation identical to that 
found in Ref. 5 in the case of a Ricci-tlat space-time [see Eq. 
( 16) ] which leads to a decoupled equation for each multiple 
principal spinor of the conformal curvature. Indeed if the 
conformal curvature has a multiple principal spinor, then by 
aligning appropriately the spin frame, we have IIJ 0 = 0 = IIJ I 
and, as a consequence of ( 13), K = 0 = u. Hence from Eq. 
( 16) making use of the first equation in (15), it follows that 

(8 - 3a + tT)Hooo - (D - € - 3p)H100 

- p(JI,o'o - JO'l'o) 

= 1IJ2¢ooo' + (8 - {3 - 2a + 'lff)Jo'o'o 

- (D - € - p)JI,o'o + pJO' I '0 - igJooo', 

(~- 3r + Jl)Hooo - (8 - {3 - 3r)Hloo 

- r(JI,o'o - JO'l'o) 

= 1IJ2¢001' + (8 - {3 + 'lff)JO'1'O 

- (D - € + 2E - P)JI'I'O - AJo'o'o 

Then by applying (8 - 2/3 - a - 3r + tT) to the first equa­
tion and (D - 2€ + E - 3p - p) to the second one and sub­
tracting, the terms with H 100 cancel by virtue of the identity I 

[D + (p - 1)€ + E + qp - p](8 + p{3 + qr) 

= [8+ (p-l){3-a+qr+'lff](D+p€+qp), 

(21 ) 

where p and q are two arbitrary constants, which follows 
from K = U = IIJ I = O. Making use of the Bianchi identities 
(D - 3p)1IJ2 = 0 and (8 - 3r)1IJ2 = 0, and of the equality 
Hooo = (D - 2€ + E - p)¢oot' - (8 - 2{3 - a + 'lff)¢000' 
which follows from Eq. (11), one finds that 

[(D- 2€+ E- 3p -p)(~ - 3r+Jl) 

- (8 - 2{3 - a - 3r + 'lff) (8 - 3a + tT) - 1IJ2 ]Hooo, 

=K, (22) 

+ 'lffJI,o'o - igJooI" (20) where we have introduced 
I 

K=. (D - 2€ + E - 3p - p) [(8 - {3 - r + 'lff)JO'l'O + (r + 'lff)JI,o'o - (D - € + 2E - P)JI'I'O - ho'o'o - igJooI ' ] 

- (8 - 2{3 - a - 3r + 'lff) [(8 - {3 - 2a + 'lff)Jo'o'o + (p - P)JO'I'O - (D - € - P - p)JI,o'o - igJooo' ]. (23) 

Thus by defining the linear operators Y and Y by 

y[JABC' ] =. [~], y[~ABC'] =. [Hooo ] , 
JA'B'C K ¢A'B'C Hooo 

(24) 

from Eqs. (18) and (22) we see that 

y,&,[¢ABC' ] = &y[~ABC' ] , (25) 
¢A'B'C ¢A'B'C 

where & is a diagonal matrix formed by (D - 2€ + E - 3p - p) (~- 3r + Jl) - (8 - 2{3 - a - 3r + 'lff) 
X (8 - 3a + tT) - 1IJ2 and its complex conjugate. Therefore using the fact that 

D t = - D - € - E + p + p, 
~ t = - ~ + r + r - Jl - ji, 

8t = - 8 - {3 + a + r - 'lff, 

8t = - 8 + a -73 - tT + T, 

(26) 

we find that tTt is also a diagonal matrix with (~ + 2r - r + ji) (D + 3€ + 2p) - (8 + 2a + 73 - T) (8 + 3{3 + 2r) - 1IJ2 

and its complex conjugate along the diagonal, and from Eqs. (23), (24), and (26) one can readily obtain 

[JABC.JA'B'C ]st[~] 
= J I'I'I{ (8 + 2{3 + a - r) (8 + 3{3 + 2r)¢ - XeD + 3€ + 2p)¢ - ig(8 + 373 + 2T)~} 

+ jI'0'1{(8 + 2{3 - a)(D + 3€ + 2p)¢ + (p - p)(8 + 3{3 + 2r)¢} 

+ r'I'I{(D + 2€ + E) (8 + 3{3 + 2r)¢ - (r + 'lff) (D + 3€ + 2p)¢} 

+r'O'I{(D + 2€ - E - pleD + 3€ + 2p)¢} + JI'I'O{ - ig(D + 3E + 2,0)~} + complex conjugate, (27) 
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from which one can identify the components of yt [1/1¢] as 
the coefficients ofJABC' and J A 'B'C' 

Hence from the general discussion presented in Sec. II, 
we conclude that if 1/1 is a solution of 

[(Il + 2y- y+,u)(D + 3£ + 2p) 

- (8 + 2a + 13 - 7)(15 + 3/3 + 21") - 'l'2]1/1 = 0, (28) 

then yt acting on the transpose of [1/1 ¢] yields a solution of 
Eq. (17). The components of this solution, given in (27), 
can also be written in the form 

¢I'l'l = (8 + 2/3 + a + 1") (15 + 3/3)1/1 

- XeD + 3£)1/1 - ig(8 + 3(j + 2r)¢, 

¢l'O'1 = (D + 2£ +"E + p) (15 + 3/3)1/1 - 7T(D + 3£)1/1, 

¢O'l'l = (8 + 2/3 - a + 1") (D + 3£)1/1 + p(15 + 3/3)1/1, 

¢O'O'l = (D + 2£ -"E + p) (D + 3£)1/1, 

¢l'l'O = - ig(D + 3"E + 2p)¢, 

¢l'O'O = ¢O'l'O = ¢o'o'o = 0, (29) 

where we have made use of the Ricci identities 

(8 - f3 + a - 1")1" = Xp, (15 - f3 - a - r)p = - pr, 
(30) 

(D - £ +"E - p)r = 7Tp, (D - £ -"E - p)p = 0, 

and of the relation (21). 
The field given by Eqs. (27) and (29) is, locally, the 

most general solution of Eq. (8), modulo the supersym­
metry transformations (12). The remaining gauge freedom 
corresponds to a certain arbitrariness involved in the defini­
tion of Y: we can add to Y any operator that composed 
with 15' gives zero identically, without altering Eq. (25). 8 By 
using the Ricci identities with Eqs. (9), (13), and (14) one 
can verify that 

VCBjA'B'C = igJc cA" (31) 

Hence the operator ;g defined by 

[
JABC'] [13 A

'V
CB

jA'B'C - ig~I1fjC'JABC'] 
;g == A BC'- -A 'B'f3 C ' 

JA 'B'C f3 V JABC' + igt: JA 'B'C 
(32) 

with f3A arbitrary, is such that ;g 15' = 0, identically. There­
fore yt + ;g t also yields a solution of Eq. (17); the contri­
bution from ;g t corresponds precisely to the transformation 
(12) with a A = ¢f3 A' Thus as in the case of the electromag­
netic field, where the gauge invariance is related to the 
charge conservation, the invariance of Eq. (8) under the 
supersymmetry transformations (12) follows from the 
"continuity equation" (31). 

In the case of a type-D or conformally flat solution of the 
Einstein vacuum field equations with cosmological con­
stant, Eq. (28) is solvable by separation of variables4.15,16; 
furthermore if K = U = v = A = 0, from Eqs. (8), (16), and 
( 30) we find that 

(D+ £ - 2"E- 5p)(D + 2£- € - 3p)(D + 3£-p)Hlll 

= (8 - a - 213 + 51T)(8 - 2a - (j + 31T) 

X (b - 3a + 1T)Hooo - iglJl2 H ooo , 
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(Il - y + 2y + 5jl)(1l - 2y + Y + 3jl)(1l - 3y + jl)Hooo 

= (8 + f3 + 2a - 5r)(15 + 2/3 + a - 3r) 

X (15 + 3/3 - r)HIII + iglJl2 HilI 

(cf. Refs. 5 and 16). 
By simply taking g, or A, equal to zero in the foregoing 

results, they coincide with those found in Ref. 5 by a differ­
ent procedure. In fact, the decoupled equation satisfied by 
Hooo [Eq. (22)] and the equation for the potential 1/1 [Eq. 
(28)] do not contain the cosmological constant explicitly 
[cf. also Eq. (46) below]. 

IV. SPIN-i- PERTURBATIONS OF SOLUTIONS OF THE 
EINSTEIN-MAXWELL EQUATIONS 

In the case of a solution of the Einstein-Maxwell equa­
tions, without cosmological constant, a consistent set of 
equations for spin-~ fields is obtained from the N = 2 ex­
tended supergravity.12,14 These equations involve a doublet 
of spin-~ fields and are given by 6,7 

V AB' I/1 JA CD' = V CD' I/1 JA AB' - i.,f2£Jkcp A C ¢kD'B 'M (33) 
wherej,k = 1,2, £jk is the usual Levi-Civita symbol, and cp AB 
is the electromagnetic spinor, or equivalently in the form 

H JABC = H J(ABC) ' H JAB,C' = 0, 

where 

H JA - V .I,JA R ' . r;,2 Jk A ::i,k R ' BC= (BIR'I'f" C) -1,,£.£ cp (B'f" IR'I c)' 

H JA B'C' ==V R(B' I/1 JAR C') - i.,f2£Jkcp A R ¢\B'C') R. 

(34) 

(35) 

These equations are consistent ifthe background gravi­
tational and electromagnetic fields satisfy the coupled Ein­
stein-Maxwell equations, 

<I> ABC'D' = 2cp ABCPC'D" 

A=O, 

VA C'CP AB = 0, 

(36) 

and then they are invariant under the supersymmetry trans­
formations 

.I,J .I,J V J . 1'12 Jk - k 
'f" ACD' -+'f" ACD' + CD,a A -1,,£.£ CPACa D" (37) 

By defining the fields 

J j D'B'C ==V AB' I/1 JA CD' - V CD' I/1 JA AB' + i.,f2£Jkcp AC¢k D'B'A' 
(38) 

one finds that 

H JAAC =!J JR'R'C,H JAB,C' = J J(B'C')A' (39) 

and, using the Ricci identities and Eqs. (36) and (38), 

VAR'H J - 'l' .I,jADR' + i '2£jk::i,k R'AV S'm ABC - ABCD'f" ,,£. 'f" S' B "rAC 

V S'Jl R' '1'12 jk A -Jk R' 
+ (B IS'I C) + 1,,£.£ tp (B IA IC) • 

(40) 

Equations (33) can be written in the form 

15' [~~ABC' ] = 0, 
1/1 A 'B'C 

(41) 

where 
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[
t/JiABC'] [I iABC' ] 

~ ¢iA'B'C := J iA'B'C . 

This operator is also antiself-adjoint, since 

(42) 
Therefore there exists a divergenceless real vector field, asso­
ciated with each solution of Eq. (33), which is the sum of 
two similar terms whose divergence vanish separately when 
the electromagnetic field vanishes [cf. Eq. (19)]. 

[c,biABC' ~iA'B'C]~[~~ABC'] 
t/J A'B'C 

+ [t/JiABC' ¢iA'B'C]IF[~:ABC'] 
c,b A'B'C 

_ V (A.iD'B'C.I,iA _ A.iB'D'A.I,iC 

As shown in Ref. 7, if one of the principal null directions 
of the background electromagnetic field is geodetic and 
shear-free, then one can derive a decoupled equation from 
Eq. (33). By choosing the spin frame in such a way that 
flJo = 0 and K = U = 0, then from Eqs. (36) it follows that 
'1'0 = '1'1 = 0, and from Eqs. (39) and ( 40) and the Maxwell 
equations 

- AB' Of' Of' CD' Of' Of' CD' (D - 2p)flJl = 0, (8 - 2T)flJl = 0, 

+ ,l"iCAD':i,iB' ,l"iACB':i,iD') 
Of' Of' D'C - Of' 'f' D'C' ( 43) one finds 

I 

(8 - 3a + 1T)H iooo - (D - E - 3p)Hi100 - p(J il,o'o - J iO'I'o) = 'l'2t/JiOOO" 

+ i2{2£ikfIJl (P~I'O'O - T¢" 0'0'0) + (8 - {3 - 2a + ir)Jio'o'o 

- (D - £ - p)J il,o'o + pJ iO'I'o + i{2EikfIJl/kooo', 

(Ll- 3Y+/-l)H iooo - (8 -{3 - 3T)H i loo -T(J il,o'o -J jO'I'o) 

= 'l'2t/Jiool ' + i2{2EikfIJl (p~I'I'O - T~o'\'o) 

+ (8 - {3 + ir)J iO'I'o - (D - E + 2€ - p)J il'I'o - J..J io'o'o + irJ il,o'o + i{2EikfIJ ll "001" 

Then, using Eq. (21), the complex conjugates of 

(8 - 2a - fj + 1T)t/Jiooo' - (D - € - p)t/JiolO' + pt/Ji loo' = i{2£i"flJl~o'o'o - J io'o'o, 

(D + 2E - € - p)t/Jillo' - (8 - fj + 1T)t/JiIOO' - 1Tt/JiolO' + At/Jiooo' 

. Pi i" - " -::i.l< i = 1,,2£ (flJlt/J 0'0'1 - flJ2'f' 0'0'0) + J 0'0'1 , 

which follow from Eq. (38), and the Bianchi identities 

(D - 3p)'I'2 = 2pq>II' (8 - 3T)'I'2 = - 2".q>1I + 2pq>I2' 

we get the decoupled equations 

[(D - 2£+ € - 3p -p)(!::. - 3Y+/-l) 

- (8 - 2{3 - a - 3T+ ir)(8 - 3a + 1T) - 'l'2]H iooo = Ki, 

with 

Ki:= (D - 2£ + € - 3p - p) [(8 - {3 - T + ir)J iO'I'o + (T + ir)J il,o'o 

- (D - E + 2€ - p)J il'I'o - J..J io'o'o] - (8 - 2{3 - a - 3T + ir) [(8 - {3 - 2a + ir)J io'o'o + (p - p)J iO'I'o' 

- (D - £ - P - p)J il,o'o] + i{2Ei"flJl [(D - 2£ + € + p - p)/"ool' - (8 - 2{3 - a + T + ir)lk
ooo' ]. 

(44) 

Therefore by defining operators Y, Y, and tJ in an analogous manner to that followed in the preceding section and making 
use of (26), we get 

-. . t[t/J
i
] [JiABC,j JA 'B'C ] Y ¢i 

1327 

= JiI'I'I{(8 + 2{3 + a - T) (8 + 3{3 + 2T)t/Ji - J..(D + 3£ + 2p)t/Ji - i{2£ik(8 + 3fj - 27) flJl¢k} 

+ JiI'0'1{(8 + 2{3 - a) (D + 3£ + 2p)t/Ji + (p - p) (8 + 3{3 + 2T)t/J'} 

+ JiO'I'I{ (D + 2£ + €)(8 + 3{3 + 2T)t/Ji - (T + ir)(D + 3£ + 2p )t/J/} 

+ Jio'O'I{(D + 2£ - € - p) (D + 3£ + 2p)t/JJ} 

+ JiI'I'O{ - i{2£ik(D + 3€ - 2p) fIJI¢"} + complex conjugate. 
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The operator yt acting on the transpose of [¢j ¢j] 
yields a solution of ( 41 ), provided that the complex poten­
tials ¢j satisfy 

[(6o+2Y-r+,u)(D+3€+2p) - (8+2a+p-7') 

X (~+ 3p + 27) - 'I12]¢i = o. (46) 

By using Eqs. (30) and (44), the solution given implicitly in 
( 45) can also be written in the form 

¢il'I'1 = (~ + 2{3 + a + 7) (c5 + 3{3)¢i 

- X(D + 3€)¢j - i.j2€ik ({JI (8 + 3P)¢k, 

¢jl'o'l = (D + 2€ + € + p)(c5 + 3p>¢i -iT(D + 3€)¢i, 

¢io'I'1 = (c5 + 2P - a + 7) (D + 3€)¢i + p(c5 + 3p>¢i, 

¢iO'O' I = (D + 2€ - € + p) (D + 3€)¢j, 

¢il'I'O = - bll€ik ({JI (D + 3€)¢k, 

¢jl'o'o = ¢jO'l'O = ¢jo'o'o = 0 . (47) 

In the present case, the invariance ofEq. (33) under the 
transformations (37) can be derived from the identity 

which follows from Eqs. (36) and (38) and the Ricci identi­
ties [cf. Eq. (31)]. 

When the conformal curvature is of type D and the prin­
cipal null directions of the electromagnetic field coincide 
with those of the conformal curvature (as in the case of the 
Kerr-Newman solution), Eq. (46) can be solved by separa­
tion ofvariables.6 ,7,15 

Again, one recovers the results for a vacuum without 
cosmological constant by simply setting the electromagnetic 
spinor equal to zero in the results of this section, 

v. CONCLUDING REMARKS 

The foregoing results show that, in spite of the various 
versions of the spin-~ massless field equations given by the 
linearized supergravity theory, in the cases treated here the 
complete solution is determined by the solutions of the sec­
ond-order linear partial differential equation 
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[(a + (2s + l)y - r + ,u)(D + 2s€ + (2s - l)p) 

- (8 + (2s -l)a +.B-7')(~ + 2sp+ (2s - 1)7) 

- (s-I)(2s-I)'I'2]¢=0, (48) 

with s = ~ [see Eqs. (28) and (46) ] . On the other hand, the 
solutions of (48) with s =~, 1, or 2 generate the complete 
solution of the Weyl neutrino equation, the source-free Max­
well equations, or the linearized Einstein field equations, re­
spectively, in an algebraically special vacuum space-time.2,3 

However, in the case of a background space-time with elec­
tromagnetic field and cosmological constant, under the as­
sumptions made in Sec. IV, the solution of the spin-~ mass­
less field equations given by the linearized N = 2 extended 
supergravity with cosmological constantl 7 is determined by 
two complex potentials that obey a coupled system of two 
second-order linear partial differential equations. 
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Based on the results of a previous paper on the thermodynamic solution of the Boltzmann 
equation, some important questions in nonlinear irreversible thermodynamics are reexamined; 
specifically, the Gibbs relations, the Onsager relations, and the relationship between 
thermodynamic stability in terms of the entropy balance equation and the dynamical stability 
of the hydrodynamic equations. 

I. INTRODUCTION 

Thermodynamics is a macroscopic theory. It is well 
known that some of the fundamental results in equilibrium 
thermodynamics can be derived from equilibrium statistical 
mechanics. The same assertion can also be made for the lin­
ear irreversible thermodynamics. I However, the problem 
becomes very difficult in the nonlinear region. Recently, in a 
series of papers, Eu2 has proposed an interesting theory of 
nonlinear irreversible thermodynamics based on the Boltz­
mann equation. 3 Following Eu's work, in this paper we in­
vestigate some of the open questions, such as the Gibbs rela­
tion, I the Onsager relations,4 and the relation between 
thermodynamic stability and dynamic stability, in terms of 
the thermodynamic solution5 of the Boltzmann equation 
which we have obtained recently. 

Although the methodology discussed in the following is 
similar to Glansdorff and Prigogine,6 and to Eu, 2 there is, 
however, a major distinction in the structure of the entropy 
density S. In traditional irreversible thermodynamics, S is 
assumed to be a differentiable function of the conserved ex­
tensive variables, while in Eu's theory, it is assumed to be a 
differentiable function of the conserved extensive variables 
as well as the fluxes of stress tensor, heat flow, and mass flow. 
On the other hand, the entropy density in our approach is a 
differentiable function of the conserved extensive variables 
as well as the stationary state of the fluxes, which in turn, are 
nonlinear functionals of the extensive variables and their 
spatial gradients. Consequently, the ensuing result that fol­
lows from the entropy density can be considered as a bridge 
between the traditional theory of irreversible thermodynam­
ics and Eu's theory on the extended irreversible thermOdy­
namics. 

Now, consider a system of gases with rcomponents con­
tained in an arbitrary region n with volume V, where no 
chemical reactions take place. Let/; (t,u; ,r) be the one-parti­
cle distribution function of species i with molecular velocity 
U; and at position r. The Boltzmann equation for the system 
can be written as 

a/; -a + u;'V /; = L C(/;,J) , 
t j 

(1) 

with C( /;, jj) representing the collision integral. 
Let Sbe the entropy density, J s the entropy current, and 

a the entropy production, defined, respectively, by 

pS= -k~L,du;/;(lOg/;-I)' (2) 

Js = - k L i du;(u; - y)/;(log/; - 1), (3) 
i flj 

where k is the Boltzmann constant and n; is an arbitrary 
region of U;. 

From Eqs. (1 )-( 4), we can easily obtain the entropy 
balance equation 

d 
p-S= - V·Js +a, 

dt 

where 

d a 
-=-+y·V. 
dt at 

(5) 

On the other hand, suppose there exists some /;, such that 
pS, J" and a satisfy the entropy balance equation, and 

H(t) = L r dr r du; /; log/; ; In In, 
satisfies the Boltzmann H equation 

.!£H = - L r dU i r (uJ; 10g/;)'dA 
dt i In, Jan 

+ t L dr L, dU i C(/;jj)log/;, 

where the boundary condition on an is described by Cercig­
nani, 7 or by Darozes and Guiraud. 8 Then/; can be shown to 
satisfy the Boltzmann equation.5 Thus the entropy balance 
equation can be considered as a nonlinear transformation of 
the Boltzmann equation. Instead of solving the Boltzmann 
equation directly, we look for some/; indirectly through Eq. 
(5), which satisfies the Boltzmann H equation with appro­
priate boundary conditions. In order to achieve this goal, we 
assume the functional hypothesis that /; depends on time t 
and position r in terms of the thermohydrodynamic vari­
ables w = {Pi' y, E, Ii;, Q;, J;, a}, where E is the energy 
density, y is the hydrodynamic velocity, Pi' Ii;, Q;, and J;, 
respectively, are the particle density, the stress tensor, the 
heat flux, and the mass flux of species i, and a denotes the 
spatial derivatives of Pi' y, E, iii' Q;, Ji> which in turn are 
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governed by the following evolution equations: 

d d 
dtP = -pV'v, P dt Cj = - V·Jj , 

d ..... 
P -v= -V'P 

dt ' 

p~E= -V·Q-P: VV, 
dt 

~TI =Z(P) + ~ A(P), 
dt I I 7" IJ 

(6) 

(7) 

(8) 

(9) 

/; =/;(0) exp{1 + ~ [(u - v)(u - V)](2): TI 
I I 2P

j
kT I I I 

~Q~ = Z(h) + ~ A(h) 
dt I I 7" IJ ' 

(10) 

~J = Z(d) + ~ A(d) 
dt I I 7" IJ ' 

(11) 

where the notations given in Eqs. (6)-( 11 ) and in the subse­
quent discussions are summarized in the Appendix. 

For simplicity, we assume that V'v = 0 in the following 
discussions. To the linear order of [VvV VT, and V (/-l;!T) , 
the entropy balance equation yields the following results5 : 

+ -Cu. - v) - - kT (u. - v)'Q~ + -- (u. - v)·J , 2mj [1 2 5] mj } 
5k2PjT 2 I 2 I I pjkT I I 

(12) 

T dS = dE +p~_ L/-lj dC
j 

+ L {X/Po): ~TIj +X/ho). ~Q; + X/do). ~Jj}' 
dt dt dt j dt j dt dt dt 

(13) 

..... ..... ..... } 
U= ~ {x.(P,,). A.(P',) +X.(ho)·A .. (ho) + X.(do)·A .. (do) 

~ I • Ij I IJ I IJ 
ij 

=~ X(P,,): _II.+X(ho)·_Q~+X(do)'_J --II: Vv--Q'·VlogT--~J.·VII. { 
d..... d d} 1..... 1 1 

£.. I d I I d I I d 'TT T £.. I /""1' 
j t t t j 

(14) 

where/; (0) is the one-particle distribution function of species 
i at equilibrium, 

A T..... 1 ..... 
XI (P,,) = - X" (Po) = - -- II. 

P 2P
j
p I' 

A T 
X.(ho ) =_X.(ho) = 

I P I 

2mj , 
5kPjTp Qj, 

A T 1 
Xj(do ) =_Xj(do) = --Jj , 

P PiP 
and A.(P',) A(ho) A.(do) are obtained from A(P) A.(h) 

lj 'lj , Ij lJ ' Ij , 

and Aij (d>, ;:especti.~ely, with/; Jiven by (12). 
Since X j (Po) , X j (ho) , and X j (do) are independent of p, 

they are intensive variables, and thus, they can be defined as 
the conjugate variables of TIj, Q;, and Jj> respectively. By 
Eqs. (2) and (12), the entropy density becomes 

TS = E + pv - L /-ljCj + L {Xj (Po): TI; 
; ; 

+ X.(ho)'Q~ +X(do)'J.} 
I I I I· 

(15) 

Hence S is a first degree homogeneous function of the exten­
sive variables E, v, Cj , TIj, Q;, J j , and Eq. (13) is a general­
ized Gibbs formula. Furthermore, by (12) and (14), U can 
be shown to be semipositive definite. 

It is interesting to note that /; can be linearized to yield 
the same expression as given by Grad's thirteen moment 
method.9 Moreover, if 

d ..... d d 
dt II j = dt Q; = dt J j = 0 , 

we then recover the first-order Chapman-Enskog 10 solution 
of the Boltzmann equation. 
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In the following sections, we discuss the stationary solu­
tions of the evolution equations (9)-( 11) for ii;, Q;, J j , and 
their implications to nonlinear irreversible thermodynam­
ics. 

II. STATIONARY SOLUTIONS OF ii" Qi. and J, 

To the linear order of [Vvf, VT, and V(/-l;IT) in the 
entropy balance equation, we have obtained a unique/; giv­
en by (12), which not only satisfies the generalized Gibbs 
formula (13), but also gives rise to a semipositive definite 
entropy production u. We define such /; as the thermody­
namic solution of the Boltzm!nn equation.5 In view of Eqs. 
(6)-( 11) and (12),p;, v, E, II j, Q;, and J; are governed by 
the evolution equations 

d 
P -c = - V·J dt I I' 

d ..... 
p-v= -V'P, 

dt 
d ..... 

p - E = - V·Q - P: Vv, 
dt 

d+-+ +-+ +-+ - II. = Z (P,,) + ~ A .. (P',) 
dt I I 7" lj , 

~ Q' = Z(ho ) + ~ A.(ho ) 

dt I I 7" IJ ' 

~ J = Z(do) + ~ A (d,,) 
dt I I 7" IJ ' 

( 6') 

( 7') 

(8') 

(9') 

(10') 

(11') 

where Z/P.,) = - 2P; [VV]2, Z/",,) = - (5kP;l2m; )VT, 
and Zj (do) = V (/-lj/T). 
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In order to simplify the notations. we introduce the fol­
lowing column vectors H. X. <1>. Z. A with 3r - 1 compo­
nents given by 

H = [HI(I) •...• Hr(l). H I (2) • •••• H/2
). H I (3) • •••• H,._ 1(3)] • 

X = [XI(I) • ... , Xr(l). X I(2) • •••• Xr (2). X/3) • •••• Xr _ 1 (3)] • 

<I> = [TIl' .... TIl" Q; •...• Q;. J I •...• J r _ 1 ] • 

Z = [ZI (I) •...• Zr (I). ZI (2) ••••• Zr (2). ZI(3) •...• Zr _ 1(3)] • 

A= [AI(I) •...• Ar(I).AI(2) •...• Ar(2).AI(3) •...• Ar __ 1(3)]. 

where 

and 

H/I) = [m;(u; - v)(u; - v)] (2) • 

H/2
) = [!m;(u; - V)2 - ~kT] (u; - v) • 

H/3
) = m;(u; - v) • 

X; (I) = X; (Po). X; (2) = X; (ho ). X; (3) = X; (do) • 

ZO) = Z. (Po) Z.(2) = Z. (ho ). Z,O) = Z,' (dol. 
I I' I I 

A(a) = '" A(a) 
I ~ lJ 

j 

= ~ J dr ;j;(0)Jj(O)H/al{e- YiJ - e- Xij
}.· 

a = 1.2.3. 

x .. = _1_ ± {X({3) H({3) + X(/3) H(m} 
IJ kT {3~ I ' 1 J J ' 

Yi) = xt = post collision value of xi) , 

dr;j = integral measure in 

the Boltzmann collision integral. 

The evolution equations for TI;, Q;. and J; can then be writ­
ten as 

!!... <I> (a) = A (a) (p .• v. T. <1» 
dt' 'J 

i = I.2, ...• 3r - I. a = 1,2,3. (16) 

which represents a system of first-order quasilinear partial 
differential equations with the same principal part 

!!... <I> (a) = i. <I> (a) + (v.V)<I>(a) . 
dt' at 1 , 

The stationary solution <1>; (a) (s.t.) of Eq. (16) is defined as 
the solution of the homogeneous equation 

!!...<I>(a) =i.<I>(a) + (v·V)<I>(a) =0. (17) 
dt 1 at 1 , 

Thus <I>/a) (s.t.) can be obtained from the system of algebra­
ic equations 

(18) 

By inverting <I>/a) (s.t.) in terms of Pj' v. T, and Z/">' we 
obtain the nonlinear constitutive relations between <1>; (a) 

X (s. t.) and Z I (a) • On the other hand, the characteristic 
equations of ( 17) are given by 
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dx = dy = dz = dt • (19) 
Vx Vy Vz 

and <1>; (a) (s.t.) = const on the characteristics. In Eu's theo­
ry. the state of a thermodynamic system is described by the 
extensive variables (Pi' v. E. it. Qi' J i ). Thus the entire set 
of evolution equations (6' )-(11') must be considered; how­
ever. in view ofEq. (19). <I>/a) (s.t. ) is constant on the char­
acteristics. This suggests that we can separate the evolution 
equations (6')-(8') into two parts. Eqs. (6')-(8') for the 
conserved extensive variables. and Eqs. (9')-(11') for the 
fluxes. From a physical point of view. due to the chaotic 
molecular collisions. <1>; (a) changes rapidly in space and time 
as compared top;. v. T. Thus <I>/a) reaches the stationary 
state defined by <1>; (a) (s.t.) within a short period of time. 
During this period of time. Pi' V. T can be considered as if 
they are constant. Once <1>; (a) is in the stationary state, 
<I>/a) (s.t.), then it depends on t and r in terms of Pi' v. T 
which satisfy Eqs. (6')-(8'). In other words. we consider 
two time scales 1"1 and 1"2 with 1" I ~ 1"2' In the first time scale 
1"1' <I>/a) evolves according to Eq. (16) where Pi' v. Tare 
almost constant. Once <1>; (a) has reached the stationary 
state, the second time scale 1"2 starts immediately. During 
this period oftime. the evolutions ofp;, v, Tare described in 
Eqs. (6')-(8'). Notice that 1"1 and 1"2 are macroscopic times. 
They are infinite as compared to the molecular time. 

The separation of the two time scales --r I and 1"2 has been 
suggested by Mori et al. II and Fox 12 in the past. On the other 
hand, it has also been questioned by Grad 13 and Keizer l4 for 
the structureless gas molecules. The explanation given above 
is only a plausible argument from the physical point of view. 
However. from a mathematical point of view. the separation 
of the time scale can be construed as a mathematical 
technique employed to decouple the evolution equations 
(6') and (11'). 

The physical consideration given above can be formu­
lated as follows. As proved by Courant and Hilbert. 15 the 
system of first-order quasilinear partial differential equa­
tions (16) with the same principal part is equivalent to the 
system of ordinary differential equations 

dx _ dy _ dz _ dt ------ , 
Vx Vy Vz 

!!... <I> (a) = A (a) (p • v. T. <1» 
dt' 'J 

(20) 

+ Z; (a)~j' V. T. 'Iv. 'IT. V f.1;) . 
Consider the time interval --r,. Let <1>; (a) = 1/I/a) 

+ <I>/a)(s.t.). where 1/1; (a) EL.2(n) such that 1/I;,a) = 0 on 
the boundary an of the region nCR 3. Denote the Hilbert 
spaceXby 

X={1/I= (1/11(1)'···.1/11'(1).1/11(2) •...• 1/11'(2). 

1/11(3) •...• 1/11'_1 (3» 11/I/a)E L.2 (n). 1/I/a) = 0 on an} 
with norm 11'11 given by 

111/1112 = t; In 1/1; (a) dn 

and the inner product ( • )induced by the norm 11'11 . 
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As A; (a) is an analytical functional of t/J; (a) , (20) can 
be rewritten in the form 

: t/J/a) = I (R) ij (a{J)t/J/{J) + g/a) (t/J) , 
t j, (J (21) 

t/J/a)(o) = (t/Jo)/a) , 

where g; (a) (t/J) is Lipshitz continuous and the matrix ele­
ments ag; (a) 1 at/Jj ((J) are continuous functions of t/J; (a) and 

IIg( t/J) 1I/11t/J11-0 as 1It/J11-0, while (R) ij (a{3) are functions of 
p;, Y, T, which are considered as constant in the time interval 

First, we consider the homogeneous equation of (21 ) 

!!-.- ,f,. (a) = '" (R) .. (a{3),f,. ( (J) 

d 'f'1 k IJ 'f'J ' 
t j, (J (22) 

t/J;(a)(o) = (t/Jo)/a). 

By examining the property of (R) /a{J) we notice that, ex­
cept for the negative sign, (R) ij (a{3) is related to the coeffi­
cients in the linear constitutive relations between the fluxes 
and the thermodynamic forces. Thus R is a negative definite 
matrix (t/J,Rt/J) <Oand (t/J,Rt/J) = Oifand only ift/J = O.ltis 
obvious that t/J = 0 is an equilibrium solution of (22). Define 
a continuous function V:X-Rby V(t/J) = 11t/J1I2. Then (dl 
dt) V = 2 (t/J, R t/J) < 0, which implies that V is a continuous 
Liapunov function for the linear dynamical system genera­
ted by R in X; hence t/J = 0 is asymptotically stable. 

Next, we consider the nonlinear equation (21). As g is 
Lipshitz continuous in X, (21) has a unique solution satisfy­
ing the initial condition t/Jo. Again, let V: X- R be given by 
V(t/J) = 1It/J112. Then 

!!-.- V(t/J) =2(t/J,Rt/J+g(t/J)t/J) 
dt 

= 2( t/J, Rt/J) + 2( t/J, g( t/J) t/J) . 

Since Ilg( t/J) 11/11t/J11-0 as Iit/JII ..... O, by the Lipshitz continuity 
of g, there exists a neighborhood N of t/J = 0 such that 2 (t/J, 
Rt/J) + (t/J, g( t/J)t/J) <. - allt/J1I2, where a is a positive real 
number. Thus (d Idt) V < - allJ/l11 2 for all t/JEN \ {O} and, 
consequently, V is a Liapunov function for the dynamical 
system generated by Eq. (21) in X. Therefore, the equilibri­
um solution t/J = 0 of (21) is asymptotically and exponen­
tially stable. 

Now that <I> ..... <I>(s.t.) exponentially, the entropy pro­
duction u in (14) reduces to 

u: = '" {X(Po). A.(po) + X(h,,)·A.(h,,) 
S.t. ~ , • 'J ' " 

i.j 

+ X(d,,)·A.(do)}s.t. 
, IJ 

= ll(s.t.): (- T-1Vy) + Q'(S.t.) (23) 

. ( - T-1V log n + I J;(s.t.) 
; 

( - T-1VIl; »0, 

and the entropy density Sin (15) reduces to 

TS= E + pv- IIl;c; + I {X/a)<I>/a)}s.t., (24) 
i i.a 

while the generalized Gibbs formula (13) becomes 
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dS dE dv . de; A d +-+ 
T-=-+p-- Ill; -+ I {X/Po): -no 

dt dt dt ; dt ;,a dt' 

+ X(ho). !!-.- Q~ + X. (do). !!-.- J.}S t 
, dt' , dt"" (25) 

where {}s.t. is evaluated at <1>; (a) = <1>; (a)(s.t.). 
We emphasize that <1>; (a)(s.t.) is now a function ofp y 

T, and the thermodynamic forces Z; (a) • " , 

lit NONLINEAR IRREVERSIBLE THERMODYNAMICS 

Once <1>; (a) has reached the stationary state defined by 
<1>; (a) (s.t.), the second time scale T2 starts immediately. Dur­
ing this interval of time, <I>/a)(s.t.) depends on t and r in 
terms of p;, Y, T, and Z; (a), which in turn are governed by 
Eqs. (6')-(8'). In the meantime, U S.I . is given by (23), and 
the entropy density is a first degree homogeneous function of 
E, V, C;, <1>; (a)(s.t.) given in Eq. (24). We now consider the 
consequences of <I>/a) (s.t.) in nonlinear irreversible ther­
modynamics. 

A. Onsager relations 

By definition 

Z. (a) = _ A. (a) = _ '" f dr. rfOlr.(OlH (a){e - Vij _ e - xij} 
, I £..t l) J; Jj , , 

j 

a = 1,2,3. 

If A; (a) is linearized, we then obtain 

Z/Il = (A);/I,I)X/I)(s,t.) 

+ I (A)tl,I)X/l(s.t.) , 
jopi 

Z/ (J) = I (A) ii ((J,y) X/y) (s.t.) 
y 

(26) 

(27) 

+ I I (A)ij({J'Y)X/Y)(s.t.) , p, r= 2,3, (28) 
jop; Y 

where 

(A)/,I) = (A»)I.I), (A») (J,y) = (A);/y,{J) , 

(A)ij({J,y) = (A)/Y,{J). 
(29) 

Expression (29) represents the Onsager relations in linear 
irreversible thermodynamics. In general, by (26) we can de­
rive the following symmetry relations: 

aA.(1) aA.(I) 
_~J___ 1 

aX/I)(s.t.) - axtl(s.t.) , 
(30) 

aA({3) aA<Y) 
J I, p, r = 2,3. 

ax/y) (s.t.) aX) ({3) (s.t.) 
(31) 

Thus, in any order of approximation of Ai (a) , the symmetry 
relations given above must be retained. These relations are 
useful in the study of transport coefficients. 

B. Nonlinear thermodynamic relations 

In view of the nonlinear constitutive relations between 
<I>/a) (s.t. ) and Zi (a), the entropy density S is also a nonlin­
ear function of Z; (a). This viewpoint is different from that of 
Eu2 or Glansdortf and Prigogine,6 where S is assumed to be 
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independent of the thermodynamic forces Zi (a) • Particular­
ly, Glansdorff and Prigogine assumed that S was a differen­
tiable function of E, v, and Ci • However, this is mainly due to 
the constraint imposed on the Chapman-Enskog method in 
solving the Boltzmann equation. 

By Eq. (24 ),Sisa differentiable function of E, V, Ci , and 
~/a)(s.t.), where X/a)(s.t.) is the conjugate variable of 
~/a)(s.t.). Thus 

T dS = dE + p dv - L f-li dCi + L {Xi (a)dct>; (a)}s.t. 
i i,a 

(32) 

Note that the exact one-form T dS given by (32) is different 
from the expression given by Eu, or the expression consid­
ered by Glansdorff and Prigogine. Particularly, Glansdorff 
and Prigogine considered the one-form 

T dS = dE + p dv - L f-li dCi . (33) 

By the Legendre transformations, we now define the follow­
ing nonequilibrium thermodynamic functions: 

Enthalpy function, 

H = E + pv= H(S,p, Co ~i(a)(S.t.»), 

Helmholtz function, 

F= E - TS = F(T, V, C; ,~/a)(s.t.»), 

and Gibbs function, 

G=H - TS= G(T,p, C;, ~/a)(s.t.»). 

By the differential form (32), we can obtain the exact differ­
ential forms of H, F, and G as follows: 

dH = TdS + vdp + Lf-l; dc; 
; 

_ " {x(a) d<l>(a)} 
""'" I I s.t. , 

(34) 
i,a 

dF = - S dT - p dv + L f-l; dc; 
; 

_ " {X. (a) d<l>. (a)} L I I S.t.' (35) 
i,a 

dG = -SdT+ vdp + Lf-l; dc; 
; 

_ " {X. (a) d<l> (a)} . 
~ I I S.t. (36) 
ita 

Finally, if we define 

E = TS - pv - E + Lf-l;C; = E(T,p,f-l;, ~/a)(s.t.»), 
; 

then, by Eqs. (24) and (32) we have 

dE = S dT - vdp + L C; df-l; + L {x; (a) d~;(a)}s.t. 
i i,a 

=" {x(a) d~(a) + ~(a) dx(a)} L I I I I s.l.' 
i,a 

which implies 

L {~; (a) dX; (a)}s.t. = S dT - V dp + L C; df-l;. (37) 
;,a . 
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It is interesting to note that differential form (37) is a non­
equilibrium generalization of the Gibbs-Duhem relation 16 

in equilibrium thermodynamics. Moreover, by (37), 
'" x/a) (s.t.) can be considered as a function of T, p, f-l;, and 
~/a)(s.t.). The partial derivatives of X/a)(s.t.) with re­
spect to these variables will be useful in the discussion of 
thermodynamic stability. 

From the differential forms (32), (34)-(37), we can 
obtain a set of nonequilibrium Maxwell relations. These rela­
tions are similar to the expressions given in Eu's paper if 

.A. 

X; (a) and r/Ji (a) in Eu's paper are replaced by Xi (a) (s.t.) and 
~/a)(s.t.), respectively. 

C. The Gibbs-Duhem theory of thermodynamic stability 

The nonequilibrium differential forms given in (32), 
(34)-(37) are generalizations of the corresponding differ­
ential forms in equilibrium thermodynamics. We now gener­
alize the thermodynamic stability theory of Gibbs and Du­
hem 17 to nonlinear irreversible thermodynamics by means of 
these differential forms. 

According to the second law of thermodynamics, the 
total entropy increases toward the maximum value at ther­
modynamic equilibrium. Therefore, the thermodynamic 
equilibrium is stable if and only if the total entropy decreases 
from its equilibrium value for all possible variations of the 
thermodynamic variables describing the thermodynamic 
state of the system. The Gibbs-Duhem criterion of thermo­
dynamic stability can be formulated as 

82'y = r dr p 82 S < 0 , In 
82'y = 0 at thermodynamic equilibrium. 

Since Sis a differentiable function of E, V, C;, ~/a) (s.t.), the 
thermodynamic state of the system can be specified by these 
variables. Thus 

T8S= 8E + pdv- Lf-l; Dc; 
; 

+ LX/a)(s.t.)8~/a)(s.t.) (38) 
i,a 

T82S= - 8T8S + 8p8v- L8p; Dc; 
; 

+ L 8X/a)(s.t.)8~/a)(s.t.) . (39) 
i,a 

By the nonequilibrium Maxwell relations derived from the 
differential forms (32), (34)-(37), Eq. (39) can be simpli­
fied as 

T 82S = - 8T(8S)¢> + 8p(8v)¢> - L 8f-l; (Dc;)¢> 
; 

[
ax(a)(s t )] 

+ ~ '(a)" 8~/a)(s.t.), 
I,a ar/J; (s.t.) 

(40) 

where 
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and the variables which do not appear in the differentiation 
in [ ] are held constant as is customarily done in equilibrium 
thermodynamics. 

We notice that the variations given in (38)-(40) are 
completely arbitrary. Thus our formulation is static in na­
ture. Now, define the specific heat at constant volume C" 
and the thermocompressibility constant K by 

[ as] =C T- 1 
(a) V , aT v, Ci,.pi (S.!.) 

Equation (40) finally becomes 

TtPS= - T-IC,,(~T)2 - V-1K-l(~V)~ 

_ ~ [aIL;] (&;)", (&j).p 
I,) aCj 

'" [ax/a)(s.t.)] 
+ ~ (a) 

I,a ~; (s.t.) 

(41 ) 

X (~<I>; (a) (s.t.) )(~¢; (a) (s.t.») . 

Since T, C", K are all positive real numbers, while 

A {- l/2pp, for a = 1, 

[axi:::(s.t.)] = _ 2m/5kpp, for a = 2, 
a¢; (s.t.) 1/ S" 3 - pp, lor a = , 

thus T ~2 S < ° and consequently ~2 Y < 0, if 

[
aIL ] .f; ae; (&i).p(&j).p>O, (42) 

while T ~2S = 0 if 8T = (8v) '" = (&;).p = 8<1>/a) (s.t.) = 0 
at thermodynamic equilibrium. 

First, we note that condition (42) is a generalization of 
the stability condition with respect to diffusion in equilibri­
um thermodynamics. 19 Second the formulation discussed 
above is based on the differentialforms (32) and (34 )-( 37). 
Except for some minor changes, we have recovered the result 
of Glansdorff and Prigogine, or the result of Eu. 

In view of the results discussed in this section, it is evi­
dent that the stationary state of the fluxes <I>/a) (s.t.) plays 
an important role in nonlinear irreversible thermodynamics. 
As a matter of fact, the dependence of thermodynamic po­
tentials on the fluxes was first considered by Keizer l8 in a 
molecular kinetic theory of dissipations and fluctuations of 
transport equations. His proposal has recently been support­
ed by some experimental evidence. 19 Insofar as linear irre­
versible thermodynamics is concerned, our result is similar 
to Keizer's. However, it would be difficult to compare the 
results in the nonlinear regime because the two methodolo­
gies and assumptions are different. 

IV. THE RELATIONSHIP BETWEEN THERMODYNAMIC 
STABILITY AND DYNAMICAL STABILITY 

In this section we consider the problem of thermody­
namic stability from the dynamical point of view in terms of 
the evolution equations (6')-(8'). Since <I>,.<a)(s.t.) is a 
function of Pi' v, E, and Z; (a), by (38) we can obtain the 
evolution equation of p 82S as 

p ~ (82S) = (8T -I)p ~ (8E) + 8(pT -I)p ~(8v) 
dt dt dt 

- L8(IL;T-I)p~(&;) 
; dt 

where the fluctuations 8E, ~v, &;, and 8<1>/a) (s.t.) are var­
iations from their equilibrium values and obey the variation­
al evolution equations 

d 
p dt &; = - V·8J i (s.t.), (44) 

p~8v= -V·8P(s.t.), (45) 
dt 

p~8E= -V·8Q(s.t.)-8(P(s.t.): Vv), (46) 
dt 

(47) 

It is important to notice that in (44)-( 46), P is the density 
weight of the independent variables & i> 8v, and 8E. Thus pis 
unvariated. By (43 )-( 46), the evolution equation for p 82 S 
finally becomes 

which can be considered as a second-order entropy balance equation. Let 8Q(s.t.) = 8J i (s.t.) = 0 on the boundary an of the 
region n. Then 
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~~2y = r ~ (p~2S)dO 
dt Jo dt 

= 1 dO{ -~Q(s.t.)·~(T-!Vlog n -8'·-+n(s.t.): ~(T-!Vv) + ~~Jj(S.t.)'V(,UjT-!)} 

+ r dO L (~x/a)(s.t.) ~~<I>,.<a)(s.t.»). Jo j,a dt 

Following Glansdorff and Prigogine, the first term on the 
right-hand side of (49) is called the generalized excess en­
tropy production. In view of (23), this term is semi positive 
definite and it vanishes at thermodynamic equilibrium. On 
the other hand, the second term is essentially determined by 
the nonlinear constitutive relations (47) and the variational 
evolution equations (44 )-( 46). 

According to the second law of thermodynamics, the 
total entropy increases toward the maximum value at ther­
modynamic equilibrium. Hence ~2 Y ..;;0. Suppose, by the 
variational evolution equations (44)-(47), 

L r do[~x/a)(s.t.)] ~~<I>/a)(s.t.);;;.O, (50) 
j.a Jo dt 

then (d Idt) 02 Y;;;'O, and the thermodynamic equilibrium is 
stable. Equation (50) is therefore a sufficient condition for 
thermodynamic stability. 

On the other hand, ifEqs. (44)-( 46) can be formulated 
as a dynamical system, and if condition (50) holds, then 
-02y;;;.0 and (dldt) ( -02y)..;;0. In other words, 
- 02 Y is a Liapunov function for the dynamical system 

and, consequently, the thermodynamic equilibrium state is 
asymptotically stable. 

In order to illustrate this argument, let us, for simplicity, 
consider the linearized hydrodynamic equations for an iso­
tropic single component system. Equations (44 )-( 46) then 
reduce to 

alP = - y aj Vj , (51 ) 

a,v j = - {3 ajT - a ajp + VajajV j + 0 aAVj , (52) 

a,T= -/lajVj +ajajT, (53) 

where i,j = 1,2, 3; y, {3, v, 0, /l, are positive constants, while 
a is a negative constant. Here, p, V j , T are variations from 
their corresponding equilibrium values, and repeated index 
means summation, i.e., ajVj = V·v. 

Let 0 be an open, regular, connected, and bounded re­
gion. Denote x = (p, VI' V2, V3, T) and 

X = L2 (O)x(L2(OWxL2 (O) , 

with norm 

Ilxll = {l (y-lp2 + a-Ivjvj +/l-IT 2
) dOr2 

and inner product ( , ) induced by the norm 11'11. 
Define a linear operator A: D(A) ex -Xby 

a,x =Ax, 

where the components of A x are given by the right-hand side 
of (51 )-(53), respectively. The boundary conditions are set 
up as follows: 
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(49) 

x=O, ajp=ajT=ajvj=o on a~. 

The linearized hydrodynamic equations (51 )-( 53) can 
be reformulated as an abstract evolution equation 

a/x =Ax, (54) 
x(O) = xoED(A) , 

where the domain D(A) is given by 

D(A) = {xeX lajpEL,2(O), aj ajVkeL2(O), aj aj TEL2(O); 

x = 0, ajVj = ajp = ajT= 0 on aO} 

== W 2(O)x(W/(OWxW,/(O) . 

First, it can be shown easily that D(A) is dense in X. Second, 
we notice that 

(x, Ax) = 1 dO{( {3a- 1 
- 1 )Taivj - va-l(ajV j )(ajVj ) 

- oa-l(ajVj)(ajVj) - 5/l- I (ai n(ajn}. 
(55) 

Suppose there exists a uniform temperature To such that 

1 dO Taivj;;;.To 1 dOajv j . 

Then, by the boundary condition, S.n dO T ajv;,>o and thus 
(x,Ax) ..;;0. This implies that - A is ail accretive operator. 20 

Finally, by taking the Fourier transform of (51 )-(53), 
we can show that, for sufficiently small positive A, the range 
of 1- AA is X, i.e., R(l- AA) = X. 

Since D(A) is dense, - A is accretive, and 
R (1 - AA) = X for sufficiently small positive A, A is the in­
finitesimal generator! of a linear dynamical system 
{U(t)}t>o on X such that II U(t)xll..;;llxll forallxeXandt:>O. 
This implies that all motions x(t) = U(t)xo are bounded. 

Next, we define a function V: X -R by Vex) = IIx1l 2
• 

Then Vex) = 2(x,x) = 2(x,Ax)..;;0. Let W:X-R (the ex­
tended real number system) be a lower semicontinuous 
function defined by 

W(x) = - 2(x, Ax);;;.O for all 

xeXn{L2(O)X(W21(O)fxW21(O)} , 

W(x) = 00 if xeXbut 
A I A. I 

Vj (X)~W2 (0), T~W2 (0) . 

Then V is a continuous Liapunov function on X. Consider 
the set M2 = {xeX I W(x) = a}. Asp, Vi' and Tareindepen­
dent variables, W(x) = 0 implies aivj = afT = O. By the 
boundary condition, we have Vj = T=O. Hence 
M2 = {xeX Ix = (p, 0, O)}. SinceM2Q::D(A), the evolution 
equation x(t) = Ax(t) does not apply to some of the mo­
tions originating in M 2• However, by employing the theory 
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of distributions,22 we can obtain a distributional evolution 
equation satisfied by all motions of{U(t)}t>o, and from this 
equation it can be concluded that the largest positive invar­
iantsetM + inM2 nD(A) isM + = {O}. On the other hand, 
we notice that the equilibrium solution Xe of the evolution 
equation (54) is Xe = O. 

Let I be the injection operator defined by I: 
(D(A),II·lIg)-X, where 1I·llg denoteslhe graph",norm. By 
the ",Sobolev embedding theorem, »~/(O)x(W/(OWx 
X (W2

2 (O») CL2 (O)x(L2 (O) )3xL2 (O), lis a compact oper­
ator.23 Hence for sufficiently small positive A., JA. 
== (l- A.A) -I:X -Xis also a compact operator.24 Since A is 
the infinitesimal generator of the linear dynamical system 
{U(t)}t>o and JA. is compact, all positive orbits rex) are 
precompact. 25 By the invariance principle, 26 
U(t)x -M + = {a} as t - 00. Consequently, the thermody­
namic equilibrium state Xe = 0 is globally asymptotically 
stable. 

When the thermodynamic system is near the equilibri­
um state, the fluxes 8t,h(a) (s.t.) are proportional to the ther­
modynamic forces 8z(a), where 8Z(P) = - 2po[Vv] (2) and 
8Z(h) = - (5kpol2m)VT. Taking the partial differenti­
ation aa on Eqs. (52) and (53), we can obtain the evolution 
equations of 8z(a) . Since 

,,-X(P) ..... u (s.t.) = - (1I2poTo)fl(s.t.) 

= (1I2poTo)8<1>(P)(s.t.), 

8X(h)(S.t.) = - (2m/5kpoTo
2 )Q'(s.t.) 

= - (2m/5kpoTo
2 )8<1>(h)(s.t.) . 

Thus 

8x(a)(s.t.) ~8<1>(a)(s.t.) = K(a) ~ [8<1>(a)(s.t.)]2, 
dt dt 

where K(a} < 0, a = p, h, and Po, To are the values of P, T, 
respectively, at equilibrium. 

By the solutions of Eqs. (51 )-( 53), Xe = 0 is globally 
asymptotically stable, and all eigenvalues of the linear opera­
tor A have negative real parts. This implies that 

~ [8<1>(a)(s.t.) ]2..;;0. 
dt 

Consequently, by Eq. (49), 

r dOI 8x(a}(s.t.) ~ 8<1>(a}(s.t.);>0, 
In a dt 

and therefore, - 82'y can be considered as an alternative 
Liapunov function for the dynamical system generated by 
Eqs. (51 )-( 53). Of course, it will be much more interesting 
and challenging if - 82'y indeed can be proved to be a Lia­
punov function for the nonlinear variational evolution equa­
tions (44 )-( 46). At the moment, we believe that this is still 
an open problem. 
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APPENDIX 

Vector: AI' scalar product of vectors: AI-A2, tensor: 01, 

tensor contraction: 01:02• 

Local average of A: (A) = Sdu; A/(r,u;,t). 
Density:p; = mini = (m;),p = l:; Pi. 
Concentration: c; = p;lp. 
Hydrodynamic velocity: pv = l:; (m; U; ), 

Internal energy density: pE=l:;qm;(u;-v) 
-CUi -v». 

Mass flux: J; = (m; (u; - v». 
Stress tensor: 

P= I P; = I (m;(u; - V)(U; - v» , 
i 

ff= Iff; = I [P;](2) 
i i 

= I {!(Pi + P;') - j(p)i} 
i 

= I (m;[ (U; - v)(u; - v)] (2» , 
, 

P; = j (p) , i: unit tensor. 

Traceless symmetric part of second rank tensor 
::1: [1 ] (2). 

Heat flux: 

Q = I Qi = I Omi(u; - V)-(Ui - V)(U; - V», 
i i 

Q; = Qi - ~ (kT) J i . 
2 m; 

Third moment: 

¢/P) = (mi (u; - v) [(u; - v)(u; - v) r 2
» , 

1/3
) = (m,(u; -v)(u; -v)(u; -v». 

Fourth moment: 

¢/h) = Om; (u; - v)-(u; - v)(u; - v)(u, - v» . 

Boltzmann collision integral: 

CU;,J;) = Cij = J du) d<l>dbbgij(/:t; -/J). 

Collisional average: 

(ACU;,J;» = (AC.) = {A} , 
I J IJ e'l 

Aij(P) = (m;[(u; - V)(U i - V)](2»Cij' 

A/h) = (Um;(u; - V)-(U; - V) - ~kT] (U; - V»c'J' 

Aij (b) = Om; (U; - v)-(u; - v) )Cij , 

Aij(/} = (m;(u; - v»Cij. 
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Other definitions: 

Z/p) = - v·7kp) -1TiV,V - 2 [1Ti'Vvf2) - 2Pi [VV](2) 

+ ~ L [JiVPj ](2) + ~[JiV'1Tj ](2), 
P j P 

Z.(h) = Zd h) _ 2. kT Z(I> _ 2. kT J . .!!:....log T, 
, , 2 m

i
' 2 m

i 
'dt 

Z/h) = - v.7kh) - QiV,V +p-1V'P: (PiE) + Pi) 

- (Qi'V)V _1/3): Vv , 

z/I> = - V.(Pi - ciP) - P.Vci - JiV·v - J i , 

Z/b) = - jPiV'Qi + (2/3p)J iV:P- fi/i:VV, 
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The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the 
Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the 
equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is 
distinguished among two-dimensional hyperbolic systems by its wealth of such multi­
Hamiltonian structures. 

I. INTRODUCTION 

A nonlinear modification of Maxwell's electrodynamics 
was proposed by Born and Infeld in 1934. I The simplest 
example of this system of nonlinear field equations is the 
quasilinear second-order equation in I + I dimensions: 

(1 + 'P ~ ) 'PI/ - 2'P,'Px'Px, - (1 - 'P ;)'Pxx = 0, (1.1) 

which is known as the Born-Infeld equation.2 The Born­
Infeld also governs minimal surfaces in 2 + I-dimensional 
Minkowski space, which is a special case of the Nambu 
string. 3 The world sheet of the N ambu string is parametrized 
by harmonic coordinates, familiar from the theory of mini­
mal surfaces, rather than the light cone gauge.4 We will also 
consider the representation of Eq. (1.1) in null coordinates: 

X' = x + t, t I = X - t, 

in terms of which the Born-Infeld equation can be rewritten 
as 

'P ~''P,',. - 2(2 + 'P,''Px' )'Px" , + 'P ;''Px'x' = o. (1.2) 

In this paper we shall discuss the Hamiltonian struc­
ture, symmetries, and conservation laws of the Born-Infeld 
equation. We shall find that it has a remarkably rich struc­
ture. The first step is to recast the Born-Infeld equation as a 
first-order quasilinear Hamiltonian system of hydrodynam-

. ic type.5•
6 Remarkably, this can be done in three inequivalent 

ways, one of which corresponds to a system of isentropic gas 
dynamics, with the adiabatic index r = - I corresponding 
to the pressure-density relation P = - 1/ p, which is known 
as a Chap/ygin gas. 7 Each of these systems is separable; there­
fore, the extensive results on Hamiltonian structures, sym­
metries, and conservation laws of Sheftel' 8 and Olver and 
Nutku9 can be used. Even among the separable two-dimen­
sional systems, the Born-Infeld system has a much richer 
algebraic structure than most, in part due to the multiple 
Hamiltonian reformulations of the equation. We will see 
that the Born-Infeld equation admits (at least) six indepen­
dent Hamiltonian structures, in contrast to two Hamilto­
nian structures for a general separable system and four Ham-

iltonian structures in the more general polytropic case. 
Moreover, the diagonalization techniques introduced by 
VeroskylO are then applied to show that these systems admit 
first-order conserved densities depending on arbitrary func­
tions-which is special to these particular systems. 

We assume that the reader is familiar with the basics of 
Hamiltonian systems of evolution equations, symmetries, 
and conservation laws, as presented, for example, in Olver. II 
In the interests of brevity, we have omitted many of the more 
complicated computations. 

II. HYPERBOLIC FORMS OF THE BORN-INFELD 
EQUATION 

We begin by showing that the Born-Infeld equation can 
be rewritten in several ways as a first-order system of quasi­
linear hyperbolic evolution equations. All of these represen­
tations have the form9 

aH 
U,= -Dx -' av 

aH 
V,= -Dx -' au (2.1 ) 

where JY' [u,v] = fH(u,v)dx is the Hamiltonian functional 
and D x is the total x derivative. In vector form, if we let 

(
U(X,t)) u(x,t) = , 
v(x,t) 

then Eqs. (2.1) are in elementary Hamiltonian form II: 

u, = YJ*Eu [H], (2.2) 

where Eu denotes the Euler operator, or variational deriva­
tive with respect to u. The Hamiltonian operator in (2.2) is 
the constant coefficient skew-adjoint differential operator 

where 0'1 = (~ ~). (2.3) 

The induced Poisson bracket on the space of densities is giv­
en by the standard formula 
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{Y,K} = ~ f Eu [F] '§*Eu [H ]dx 

= + f {Ev [F]DxEu [H] 

- Eu [F]DxEv [H ]}dx. 

We begin by looking at Eq. (1.1) in the physical vari­
ables. Since ( 1.1 ) can be derived from a variational principal 
where the Lagrangian depends only on the gradient of qJ, we 
know that it can be expressed as the integrability condition 
of a first-order system.6 To effect this change, we introduce a 
new potential 1/1 given by 

1/Ix =qJJ~1 +qJ; -qJ;, 1/1, =qJ,I~1 +qJ; -qJ;. 
(2.4) 

Inverting Eqs. (2.4) for the first derivatives of qJ we find the 
same expressions, with the roles of qJ and 1/1 interchanged. 
Equation ( 1.1 ) is then realized as the integrability condition 
for system (2.4): Moreover, its companion equation ex­
pressing the integrability conditions for qJ is again (1.1), 
with 1/1 replacing qJ. We shall now formulate these equations 
in terms of a pair of conservation laws. For this purpose, we 
introduce the variables 

r=qJx' s=1/Ix· 

Solving (2.4) for qJ" 1/1, we deduce that the one-forms 

a = r dx + s~ (1 + r 2)/(1 + S2) dt = dqJ, 

{t)=sdx+r~(1 +?)/(1 +r2)dt=d1/l, 

are exact; the implication that they are closed gives rise to the 
following pair of quasilinear evolution equations: 

r, = [rs/~(1 + r2)(1 +S2) ]rx 

+ ~(1 + r2)/(l + S2)3 Sx' 

S, =~(1 +S2)/(1 + r2)3 rx 

+ [rs/~ (1 + r 2) (1 + S2) ]sx' 

(2.5) 

We will call the quasi linear system (2.5) the physical version 
of the Born-Infeld equation. It is easy to see that (2.5) is in 
the standard Hamiltonian form (2.2), where 

(2.6) 

is the Hamiltonian density. We note that there are alterna­
tive ways of reexpressing ( 1.1) as the integrability condition 
of a first-order system such as (2.2), but there is a unique 
choice of 1/1 which will result in a Hamiltonian system of 
equations. (An alternative first-order form ofthe Born-In­
feld equation that is not Hamiltonian can be found in 
Whitham.2

) 

A similar reasoning applies to the Born-Infeld equa­
tion, rewritten in the null coordinates (1.2). Dropping the 
primes on x, t, we similarly introduce a new potential X by 

Xx = - qJx/~1 + qJxqJ" X, = qJ,I~1 + qJxqJ, . (2.7) 

As in (2.4), the companion equation for X is identical to 
( 1.2). Define 

z = qJx' W = Xx' 

Note that the one-forms 
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a = z dx - (liz - z/w2)dt = dqJ, 

{t) = W dx - (lIw - w/r)dt = dX 

are exact, leading to an alternative system of quasilinear evo­
lution equations: 

z, = (lIr + lIw2)z" - (2z/w3 )wx' 

w, = - (2w/f)zx + (lIr + lIw2)wx, 
(2.8) 

which will be called the null coordinate version of the Born­
Infeld equation. Again, (2.8) are in Hamiltonian form 
(2.2), with the Hamiltonian density 

A 

H*(z,W) = z/w + w/z. (2.9) 

Although the two versions of the Born-Infeld equation 
can be obtained by a transformation between physical and 
null coordinates, it is rather remarkable that there is also a 
transformation of the dependent variables which maps one 
to the other, as shown in the following theorem. 

Theorem 1: Given r, s with rs> 1, define the transforma­
tion 

Z= (1 +r2)1/4(1 +s2)1/4[(rs+ 1)1/2+ (rs_l)I/2], 

w= (1 + r2)1/4(1 +s2)1/4[(rs+ 1)1/2 - (rs-1)1/2]. 
(2.10) 

If (r,s) satisfy the physical version of the Born-Infeld equa­
tion (2.5), then (z,w) satisfy the null coordinate version 
(2.8). 

The proof is a straightforward, but lengthy calculation. 
In Sec. III we shall see how the transformation (2.10) can be 
systematically deduced by referring to the second Hamilto­
nian structure of (2.5). 

We now turn to a remarkable transformation from the 
Born-Infeld system to a system of quasilinear equations aris­
ing in polytropic gas dynamics. 

Theorem 2: Define the variables 

u = - (lIr + lIw2), v = zw/2. (2.11 ) 

Then z, w satisfy the Born-Infeld system (2.8) if and only if 
u,v satisfy the gas dynamics system 

u, + uUx + v- 3vx = 0, v, + (uv)x = O. (2.12) 

The proof is again a straightforward calculation. The 
system (2.12) corresponds to the equations of isentropic, 
polytropic gas dynamics with the adiabatic index r = - 1, 
known as a Chaplygin gas. 7 The system (2.12) is distin­
guished from such quasiIinear hyperbolic systems by the fact 
that shocks do not form 12.2: This system is also in the elemen­
tary Hamiltonian form (2.2), with the Hamiltonian density 

H*(u,v) = u2v/2 + lI2v. (2.13) 

We remark that the reduction of a gas dynamics system to a 
single second-order hyperbolic equation, which includes the 
reduction of a Chaplygin gas to the Born-Infeld equation 
( 1.2), can be found in Garabedian. 13 Note, also, that the 
physical version (2.5) can be transformed directly to the gas 
dynamics version (2.12) by composing the transformations 
(2.10) and (2.11): 

u = rs/ ~ (1 + r 2)( 1 + ?) , v = ~ (1 + r 2)( 1 + S2) . 
(2.14 ) 

We thus have three distinct ways of reformulating the 
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Born-Infeld equation as a Hamiltonian system of quasilin­
ear evolution equations of the type (2.2). To keep track of 
various functions and operators in the different coordinate 
systems, we will adopt the following conventions: In the 
physical (r,s) version, these quantities will have an overtilde, 
e.g., H; in the null (z,w) version, they will have a caret, e.g., 
H; and the gas dynamics (u,v) coordinates will not have any 
distinguishing mark, e.g., H. 

III. FIRST-ORDER HAMILTONIAN OPERATORS 

We now investigate other first-order Hamiltonian struc­
tures for the Born-Infeld equation using the methods found 
in Refs. 6 and 9. First, we recall that the most general skew­
adjoint first-order matrix differential operator has the form 

.fiJ = M·Dx + Dx·M + Qx 

(
2mDx +mx 

- 2pDx +Px -qx 
2pDx + Px + qx) 
2nDx + nx ' 

(3.1 ) 

where 

is a general symmetric matrix, 

Q=( ° q) 
-q ° 

is a general skew-symmetric matrix, and where the coeffi­
cients m, n, p, and q are allowed to depend on the dependent 
variables. The particular Hamiltonian operator (2.3) corre­
sponds to the choice 

.fiJ*: m* = n* = q* = 0, p* = -!. (3.2) 

In order that the Poisson bracket associated with the opera­
tor (3.1) satisfies the Jacobi identity, the coefficients m, n, p, 
and q must satisfy additional first-order partial differential 
equations.6 

Besides the standard Hamiltonian form (2.2), any poly­
tropic gas dynamics system can be written in two additional, 
alternative Hamiltonian forms involving first-order Hamil­
tonian operators6 and making it a tri-Hamiltonian system: 

U t = .fiJoEu (H2) =.fiJ lEu (HI) = .fiJ2Eu (Ho). (3.3) 

For the case of the adiabatic index r = - 1, the Hamilto­
nian operators in (3.3) have the form 

.fiJo=.fiJ*: mo=O, no=O, Po= -!, qo=O, (3.4) 

.fiJ I: m l = l/v3, nl = v, PI = - U, ql = 2u, (3.5) 

.fiJ2: m2 = U/V3, n2 = UV, P2 = - u2/2 - 1/2v2, 

q2=U2 (3.6) 

Po= _!(Z-2_ W-2)-I, QO=(Z-2_ W-2)-I, 

fj; 1= - 2.fiJ*: ml = 0, nl = 0, PI = 1, ql = 0, 

1340 J. Math. Phys., Vol. 30, No.6, June 1989 

and are mutually compatible. II We note that (3.4)-(3.6) 
are genuinely distinct Hamiltonian operators, meaning that 
.fiJ 2 is not related to .fiJ 0 and .fiJ I according to a well-known 
recurrence formula 14 which generates higher order Hamil­
tonian operators from any bi-Hamiltonian system. The cor­
responding Hamiltonian densities placing (2.12) in the tri­
Hamiltonian form (3.3) are 

Ho = V, HI = UV, H2 = u2v/2 + 1!2v, (3.7) 

which appear in the well-known hierarchy of conserved den­
sities for gas dynamics.9 (See Sec. IV.) 

Before proceeding to the tri-Hamiltonian structure of 
the null coordinate and physical versions of the Born-Infeld 
equation, it helps to recall how Hamiltonian operators trans­
form under a change of variables . 

Lemma 3:14
•
15 Letu = qJ(Z) be a change of variables and 

let J denote the Jacobian matrix of qJ. Let.fiJ denote a Hamil-
A 

tonian operator in the u coordinates and .fiJ the correspond-
ing Hamiltonian operator in the Z coordinates; then these 
two operators are related by the change of variables formula 

.fiJ = J.fj;.JT. (3.8) 

Thus for Hamiltonian operators of the form (3.1), we 
find the corresponding coefficient matrices have the change 
of variables formula 

Q = J.QA .JT+ J·M·JT _ J ·M·JT x x x x • 

(3.9) 

Dubrovin and Novikov5 have pointed out that the Poisson 
brackets defined by Hamiltonian operators for equations of 
hydrodynamic type give rise to Riemannian metrics with 
vanishing torsion and curvature. The metric corresponding 
to an operator of the form (3.1) is given by 

dr = (n du2 - 2p du dv + m dv2)/(mn - p2). (3.10) 

Since the metric (3.10) is fiat we know that a (possibly com­
plex) change of variables u = qJ(z) will bring it to the ca­
nonical form d'S2 = 2 dz dw, determining the maximal ana­
lytic extension of the metric and corresponding to the 
elementary Hamiltonian operator (2.3). Remarkably, the 
transformations (2.11) and (2.14) are precisely the ones 
needed to place the metrics determined by the Hamiltonian 
operators .fiJ I' .fiJ 2 in canonical form. 

Proposition 4: Under the transformations (2.11) and 
(2.14) the Hamiltonian operators and densities for the gas 
dynamics system (2.12) are mapped to the following Hamil­
tonian operators and densities for the null and physical ver­
sions of the Born-Infeld equation: 

Null coordinate version-Hamiltonian operators: 
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Hamiltonian densities: 

Ho(z,w) = zw/2, 

HI (Z,w) = - z/2w - w/2z, 

H 2 (z,w) = w/4~ + 3/2zw + Z/4W 3. 

Physical version-Hamiltonian operators: 

PlJ 0: mo = - 2rs(1 + r 2)2, no = - 2rs(1 + S2)2 
(r2_~)2 (r2_~)2 

_ (r2+~)(1+r2)(1+s2) 

Po = (2 2)2 ' r -s 

PlJ 2 = g;*: m 2 = 0, n2 = 0, P2 = -~, Ch = O. 

Hamiltonian densities: 

Ho(r,s) = ~ (1 + r 2) (1 + S2), 

HI (r,s) = rs, 
H 2(r,s) = (r 2s2+ 1)/2~(1 +r2)(1 +S2) 

IV. RECURSION OPERATORS AND CONSERVED 
DENSITIES 

According to Magri's theorem,16 any compatible bi­
Hamiltonian system has an associated recursion operator. 
The Hamiltonian operators g; 0' g; I' and g; 2 are mutually 
compatible6; thus there are three recursion operators for the 
gas dynamics system, 

flll = § I·g;o-I, fll2 = g;2'§0-1, fll3 = g;2·g; I-I, 
(4.1 ) 

although there is a trivial relation between them: 

Similar recursion operators can be constructed for the null 
coordinate and physical versions of the Born-Infeld equa­
tion. Now, a curious phenomenon occurs when we apply the 
recursion operator to the hierarchy where the Born-Infeld 
Hamiltonian lies. We find that the hierarchy of Hamiltonian 
flows fll I terminates after just two steps: 

flll: Ho~HI~H2~0 

because the second Hamiltonian H2 is a distinguished func­
tional (Casimir) for the Hamiltonian structure determined 
by § I' Therefore, the hierarchy guaranteed by Magri's 
theorem 16 degenerates into just three independent Hamilto­
nians; we have a nontrivial example of a bi-Hamiltonian sys­
tem which does not satisfy one of the technical hypotheses of 
Magri's theorem, which states that the hierarchy of Hamil-
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tonians be independent functionalsy,16 However, the sec­
ond recursion operator fll 2 does generate further members of 
the gas dynamics hierarchy of conserved densities.9 (We re­
mark that in Ref. 9 we failed to show that this property of the 
hierarchy of flows generated by one of the recursion opera­
tors can occasionally degenerate. The equations following 
(4.3) of Ref. 9 should read as 

flll(Qn) = (ny- n - I)Qn+ I' 

fll 2(Qn) = (n12)(ny + y - n - 3)Qn+2' 

flll«t) = (ny-n+ l)Qn+1> 

fll 2(Qn) = [(n+ 1)/2](ny-n+ l)Qn+2' 

leading to degeneracies if y has one of the forms 1 ± lin, 
1 ± 2/n for some integer n.) 

Another interesting anomaly occurs for the physical 
version of the Born-Infeld equation. Here, from the point of 
view of Ref. 6, the most natural recursion operator would be 

aJ*_ 7,;, .7,;,-1_ 7> ."",*-1 
;:/[ -=1=2 --'PI= . 

Again, this recursion operator does not produce a hierarchy 
of symmetries and conserved Hamiltonian densities. In fact, 
as the reader can check, the recursion operator repeats after 
two steps: 

fll*: Ho~HI ~Ho~HI ~Ho~ ... , 

resulting in an infinite loop; again the functionals produced 
by Magri's theoreml6 are not independent. [At first glance, 
this result does not seem reconciled with the gas dynamics 
version under the transformation (2.14). However, we note 
that since the recursion operator involves the inverse of the 
Hamiltonian operator § *, we can add in any element of its 
kernel at each step. Thus the explanation is that we have just 
chosen different elements of ker § 2 to add in.] 

The gas dynamics, null coordinate, and physical ver­
sions of the Born-Infeld equation are examples of separable 
systems,8,9 meaning that the Hamiltonian density H in the 
representation (2.2) satisfies 

(4.2) 

For the three versions, the separation coefficients are given 
by 

gas dynamics [(2.12)]: 

!L(u) = 1, J.l(v) = v-4, 

null version [(2.8)]: 

A(z) = Z-4, jJ(w) = w- 4 , 

physical version [( 2.5) ]: 

-i(r) = (1 + r 2) -2, jl(s) = (1 +~) -2, 

(4.3) 

It is standard that the zeroth-order conserved densities for 
such a system can be found by solving a separable linear 
wave equation.8,9 

Proposition 5: A function F(u,v) is a conserved density 
of a separable Hamiltonian system (2.2) and (4.2) if and 
only if it is a solution to the linear wave equation 

(4.4 ) 

Any Hamiltonian system (2.2) admits the conserved 
densities 1, u, v, and uv. In the separable case, there are four 
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fundamental hierarchies of solutions to the wave equation 
( 4.4 ), each of the form 

n 

Hn (u,v) = L F j (u) 'Gn _ j (v), (4.5) 
;=0 

where the functions F j and Gj are generated by the recursion 
relations 

a2p 
-' =,A{u)Fi _ l , Fj(O) = F;(O) = 0, 
au2 

a2G 
av2' =f.l(v)Gj_1> Gj(O)=G;(O)=O. 

The hierarchies depend on the initial selection of 
Ho=Fo'Go: 

H6\) = 1, F61) = G61) = 1, 

H62) = U, F62) = U, G62) = 1, 

H63
) = V, F63

) = 1, G63
) = V, 

H64) = uv, F64) = U, G64) = v. 

Our transformations do not respect this hierarchical 
structure of the conserved densities. For example, (2.11) 
maps the first and fourth null Born-Infeld hierarchies to 
combinations of all four gas dynamics hierarchies, so that up 
to a multiple, 

H 2(1)-+H(I), H(4) H(3) 
J 1 2j -+ j , 

H" (I) H(2) H" (4) H(4) 
2} + I -+ }' 2j + I -+ } • 

On the other hand, the second and third hierarchies are 
mapped to algebraic conserved densities for the gas dynam­
ics version (2.12). For example, the conserved density 
H 62

) = z is mapped to the conserved density 

~ v - uv2 + ~ - v - uv2 
, 

which does not show up in any of the standard gas dynamics 
hierarchies. The hierarchies in the physical r, s variables are 
no longer rational functions and we shall not write them 
explicitly: They do not correspond to any of the hierarchies 
in the other variables (with isolated exceptions) and provide 
yet other non polynomial conserved densities for gas dynam­
ics system (2.12). 

V. HIGHER ORDER HAMILTONIAN STRUCTURES 

In Olver and Nutku9 it was shown that any separable 
Hamiltonian system has a second Hamiltonian structure in­
volving a complicated third-order matrix differential opera­
tor. The resulting recursion operator recovers results on 
symmetries and conservation laws due to Sheftel'. 8 For the 
Born-Infeld equations, each of the gas dynamics, null coor­
dinate, and physical versions is separable, and so we are led 
to three distinct third-order Hamiltonian structures. This is 
probably quite special to these particular systems, but we 
have no proof of this fact. In particular, it would be interest­
ing to see whether any of the other polytropic gas dynamics 
systems have additional Hamiltonian structures. 

Theorem 6: Consider a separable Hamiltonian system 
(2.2), where the Hamiltonian density satisfies (4.2). Define 
the matrix variables 
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_ (Ux f.l(V)Vx ) = (A.(U)Ux f.l(V)Vx) (5.1) u - , Vx . 
x Vx A.(u)ux Vx Ux 

Then the system can be written in the bi-Hamiltonian form 

U t = Ifd*Eu (H) = 'If Eu (H*) (5.2) 

using the third-order matrix differential operator 

'If =Dx'Vx-I'Dx'U;I'UI'Dx 

= Dx' V; I'Dx 'U\' V; T'Dx' (5.3 ) 

In particular, 'If is Hamiltonian and compatible with Ifd *. 
In the case of gas dynamics the matrix variables coin­

cide: 

(

Ux 
U =V = 

x x Vx 

and the corresponding Hamiltonian operator (5.3) is 

'If 0 = Dx' U x-I'Dx' U x-I'uI'Dx, (5.4) 

which is compatible with Ifdo = Ifd*. The second Hamilto­
nian in (5.2) turns out to be 

H * = H i3
) = u4v/24 + u2/2v + 1!24v3

, 

which appears in the third hierarchy (4.5) of conserved den­
sities. The corresponding recursion operator is the square of 
the simple recursion operator 

!!ll=DX'U X-
I, 

so that 
'If·Ifd O-

1 = Dx'U ;1'Dx ' U x-I = !!ll2. 

(5.5 ) 

Similarly, we have a third-order recursion operator in 
the null variables (z,w). We define the matrix variables 

and the operator 
" I I 'If\=Dx'W; 'Dx'Z; 'u\'Dx 

= Dx' W x-1'Dx 'UI ' W x- T'Dx 

is Hamiltonian. Moreover, the Hamiltonian operators ~ \ 
and fj; I = - 2Ifd * are compatible; therefore, they form a 
Hamiltonian pair. The null Born-Infeld equation (2.8) can 
be written as a bi-Hamiltonian system 

(5.6) 

where the Hamiltonian is a multiple of the Hamiltonian 
H i2

) in the fourth hierarchy (4.5): 

H*(z,w) = 2Hi4
) (z,w) = w/12~ + 1!2zw + z/12w3. 

Note that the transformation (2.11) cannot map the 
above two higher order Hamiltonian operators to each other 
since the corresponding bi-Hamiltonian structures do not 
match, nor are the compatibility relations preserved. Indeed, 
a long calculation proves that the gas dynamics recursion 
operator arising from the bi-Hamiltonian Form (5.6) under 
the transformation (2.11) is the operator 

A A A_I 2 
!!ll\='lf1Ifd j -+ -2!!ll\!!ll, 

where !!ll is the gas dynamics recursion operator given by 
(5.5) and !!ll 1 is the recursion operator (4.1) arising from 
Nutku's6 Hamiltonian structures for gas dynamics. There­
fore the operator 
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~I= -2~1~0~1 

in another third-order Hamiltonian operator for Eqs. (2.12) 
which is compatible with the first-order Hamiltonian opera­
tor ~ I' but not with either ~ 0 or ~ 2' 

Finally there is yet another third-order Hamiltonian op­
erator arising from the physical version of the Born-Infeld 
equation. The operator takes the form 

f&'2 = Dx'S x-I'Dx' R x-I'UI'Dx 

= Dx'S x-I'Dx 'uI'S x- T'Dx' 

where 

(
rx 

R = x 
Sx 

This Hamiltonian operator is compatible with fi) 2 = ~ * 
and so, when transformed back to the other coordinate sys­
tems, it provides yet another Hamiltonian structure for the 
Born-Infeld equation. 

In summary, then, we have found that the Born-Infeld 
equation in any of its evolutionary forms (2.5), (2.8), or 
(2.12) possesses six distinct Hamiltonian structures: Three 
are first order, given by the operators ~ 0' ~ I' and ~ 2 and 
three are third order, given by the operators ~ 0' ~ I' and ~ 2' 

Moreover ~ i is compatible with ~j if and only if i = j. 
Whether there are yet more Hamiltonian structures, not 
trivially related to these, remains an open question! 

VI. DIAGONALIZATION AND HIGHER ORDER 
CONSERVATION LAWS 

As shown by Olver and Nutku9
, for a generalized gas 

dynamics Hamiltonian system there is an additional hierar­
chy of higher order conservation laws generalizing Ver­
osky's rational first-order conserved density l7: 

(6.1 ) 

The case of a Chaplygin gas, r = - 1, is distinguished in 
that it admits an infinite collection of distinct first-order con­
served densities (i.e., they do not differ by a divergence): 
The easiest way to see this is to apply a diagonalization tech­
nique, described by VeroskylO and Tsarev. 18 

Definition 7: A first-order quasilinear system is said to 
be in diagonal form if it has the form 

p, = A( p,q)px, q, = B( p,q)qx' (6.2) 

We remark that the existence of a diagonal form for a 
quasilinear first-order system is related to the existence of 
Riemann invariants. 18 

Proposition 8: For the Chaplygin system (2.12), the 
transformation 

p = u + l/v, q = u - l/v 

place it in the diagonal form 19 

(6.3) 

p, = - qpx' q, = - pqx· (6.4) 

Theorem 910: A two-dimensional diagonal quasilinear sys­
tem (6.2) has a first-order conservation law 
D, T + DxX = 0, with conserved density and flux of the 
form 
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T= F(p,q) + G(p,q) , X= AF + BG (6.5) 
Px qx Px qx 

if and only if F and G satisfy the system of differential equa­
tions 

(A - B)Gp = 2GBp ' (B -A)Fq = 2FA q , 

FAp + GBq =0. 
(6.6) 

For the special case A = - q, B = - p, corresponding 
to the Born-Infeld equation, the third equation in (6.6) is 
vacuous; thus there are the solutions 

F( p,q) = a( p)/( p - q)2, G( p,q) = p(q)/( p _ q)2 
(6.7) 

depending on the arbitrary functions a ( p), p( q). There are 
similar expressions for other gas dynamics systems with 
r=l= - 1, but then the third equation in (6.6) is not vacuous; 
this restricts the corresponding functions to satisfying 
a = - 13 and thus both coefficients must be constant! Thus 
the Born-Infeld case is very special. 

In terms of the gas dynamics variables, the conserved 
densities have the form 

T[u,v] =v4a(u+v- 1 )/(v2ux -vx ) 

+ v4p(u - v- 1)/(V2ux + vx )· 

Note that the case a = ~,p = - ~ reproduces the conserved 
density (6.1) when r= - 1. Under the transformation 
(2.11 ), these turn into the following conserved densities for 
the null version of the Born-Infeld equation: 

Z4w 4a(Z-1 _ w- 1) Z4W4P(Z-1 + w- 1) 

T [z,w] = 2 2 + 2 r ' 
w Zx - Z Wx W Zx + Wx 

where 

a(s) = a( - s2)/8s, pes) = p( - s2)/8s. 

For the particular choices a(s) = 1, pes) = ± 1, i.e., 

a(s) = 8!=S,p(s) = 8!=S,weobtaintheconservedden­
sities 

Z6W 6wx /(W4z;, - Z4W;), Z6W 6zx /(W4z;, - Z4W;), 

which are more like the first-order densities discovered in 
Veroskyl7; see, also, Olver and Nutku.9 1t is interesting that 
the transformation (2.11) does not map the Verosky-type 
densities to each other. 

It can be shown that the third-order evolution equations 
corresponding to the above two densities are each bi-Hamil­
tonian systems; hence the recursion operators lead to two 
further hierarchies of higher order conserved densities. 
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Noether's theorem and gauge transformations: Application to the bosonic 
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New results on the theory of constrained systems are applied to characterize the generators of 
Noether's symmetry transformations. As a byproduct, an algorithm to construct gauge 
transformations in Hamiltonian formalism is derived. This is illustrated with two relevant 
examples. 

I. INTRODUCTION 

It is superfluous to emphasize the relevance of gauge 
theories in modern physics. In spite of this, many aspects of 
the classical theory of constrained systems-those which 
have elbow room for gauge transformations-are not com­
pletely developed. The aim of this paper is to clarify the role 
of the Lagrangian Noether theorem in obtaining the genera­
tors of Hamiltonian gauge transformations. This is achieved 
by applying some results recently obtained concerning the 
relationship between the Hamiltonian and Lagrangian for­
malisms. I

-
3 These new results apply to general constrained 

systems, with first- and second-class constraints, under the 
only regularity conditions of Ref. 2. 

The paper is organized as follows. In Sec. II we set the 
notation and summarize some of the results of Refs. 1-3; 
they are used in Sec. III to characterize the Hamiltonian 
generators of a general symmetry Noether transformation. 
In Sec. IV the specific case of gauge transformations is con­
sidered. Section V is devoted to some relevant applications: 
the bosonic string and the CP ~ - 1 model. 

All structures are supposed to be COO. Indices of coordi­
nates will be omitted. 

II. PRELIMINARY RESULTS 

Here we state some of the results needed in Sec. III. For 
more details see Refs. 2 and 3. Minor changes of notation 
have been done. 

A configuration space Q and a Lagrangian L are given. 
We shall always work with natural coordinates such as (q,v) 
in T(Q) and (q,p) in T(Q)*. 

Then the Euler-Lagrange equations for a curve 
(q(t),p(t») in T(Q) can be written as 

q=v, 

Wv=a, 

where we have introduced the Hessian matrix 

a2L 
W:=--

avav 

and 

aL a 2L a:=--v--. 
aq aqav 

(2.1 ) 

(2.2) 

(2.3 ) 

(2.4) 

.) Present address: Department of Physics, Princeton University, Prince­
ton, NJ 08540. 

The Legendre transformation FL:T(Q) -+ T(Q)*, with 
the local expression 

FL(q,v) = (q, ~~ ). (2.5) 

has the image Mo C T( Q) *, which is assumed to be a sub­
manifold (locally) defined by the mo primary Hamiltonian 
constraints,p~ (l<ll<mo)' 

The vertical vector fields 

a 
rJt: = YJt - (2.6) 

av 

constitute a frame for the sub-bundle Ker T(FL) C T( V), 
where 

(
a,pO) 

YJt: =FL * a; (2.7) 

are a basis for the null vectors of W. 
An outstanding object in our development is the opera­

tor K 2, which is now understood4 as a vector field along FL, 
that is to say, it is a mapping that makes the following dia­
gram commutative: 

T(T(Q)*) Y /OT(Q) .. 
T(Q)-T(Q) * 

FL 

Its local expression is 

a aL a 
K(q,v) = v-+--. 

aq aq ap 

In fact, we shall need K in the time-dependent case, so that 
we shall add a I at to it: 

K(q,v,t) =v~+ aL ~+~. (2.8) 
aq aq ap at 

Now K can be regarded as a differential operator as fol­
lows. Iffis a function in T(Q)*XR, 

KI= vFL *( af
) + aL FL *( af

) + FL *(a
f

) (2.9) 
aq aq ap at 

is a function in T( Q) xR. 
Now let H be a Hamiltonian function, that is, 

FL *(H) = E L , where 

aL 
EL=V--L (2.10) 

av 
is the Lagrangian energy. 
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One can proveZ
•
5 that there exist mo functions ,i I' in 

T( Q) such that 

u = FL *{q,H} + ,if.lFL *{q,l,b~}, (2.11) 

aL =FL*{P,iI}+,if.lFL*{p,l,b0}. (2.12) 
aq I' 

These functions ,i I' are not FL projectable since 
r,L .,i v = 0;. Then, it is easy to obtain 

K,/ = FL *{f,H} +,i f.lFL *{f,l,b~} + FL *( ~) (2.13) 

and 

(2.14 ) 

A careful analysisZ of Eqs. (2.11) and (2.12) lets us 
write the Hamilton-Dirac equations as 

i = {f,H} + rt{f,l,b~} + aa
lf

, 
M.. t 

(2.15 ) 

where rt are arbitrary functions of time. 
Now derivation of (2.11) with respect to u expresses the 

identity matrix as 
a,if.l 

1= MW + yf.l ®--, (2.16) 
au 

where 

M = FL *( aZH) +,i f.lFL *(a2l,b~) . 
apap apap 

(2.17 ) 

Application of (2.16) to (2.1) and (2.2) leads to the intro­
duction of time-evolution fields in T( Q): 

Du: = Do + uf.lrf.l' 

where uf.l are arbitrary functions of time and 

a a a 
Do: = u - + aM - + -. 

aq au at 

Then the Euler-Lagrange equations also read 

g=Du'g, 
s , 

(2.18 ) 

(2.19) 

(2.20) 

where SI C T( Q) is the submanifold defined by the primary 
Lagrangian constraints 

x~=aYf.l=K·l,b~. (2.21) 

Bearing all these relations in mind one can prove that 

K,/= Du ·FL *(f) + x~ (Yf.l-J), (2.22) 

where we have introduced mo vector fields along FL: 

a,if.l a 
Yf.l(q,u) = ----. 

au ap 
(2.23 ) 

Finally, we want to point out that at the present time 
most of these objects and relations can be defined or written 
intrinsically: not only (2.5) and (2.10), which are well­
known,6 but also (2.1)-(2.2), (2.8), and (2.9)4; (2.6)7; 
(2.11 )-(2.12), (2.13), (2.22), and (2.23 )5; and (2.21 ).1,2 

III. CHARACTERIZATION OF NOETHER 
TRANSFORMATIONS 

In the following it will be useful to enlarge our space 
with a third set of independent coordinates, the accelerations 
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a; that is to say, we shall work in the second tangent bundle 
T2(Q). 

We shall consider the operator [which maps functions 
in T( Q) XR to functions in T2( Q) XR) 

d a a a 
-=u-+a-+-. (3.1) 
dt aq au at 

Then the Euler-Lagrange equations can be written as 

[L)(q.q.ii) =0, (3.2) 

where we have defined 

[L):= aL _!!...(aL)=a_aw. (3.3) 
aq dt au 

Noether's theorems yield a sufficient condition for a 
oq(q,u,t) to be a dynamical symmetry transformation 
(DST) of L, that is to say, to map solutions into solutions. 
This condition can be written as8

-
1O 

(3.4) 

for certain G( q,v,t). We call such a oq a Noether transforma­
tion. The acceleration appears linearly in (3.4), so that it 
splits into two relations 10-12: 

aG aG 
aoq+v-+-=O, 

aq at 

aG 
-- Woq=o. 
au 

(3.5) 

(3.6) 

An immediate result from (3.6) is that G is an FL-pro­
jectablefunction since rf.l·G = Yf.l (aG /av) = Yf.l W oq = 0. 
Therefore, there exists Gh (q,p,t) (up to primary con­
straints) such that 

G = FL *(Gh ). (3.7) 

Now we apply the operator K to Gh , bearing (2.22), 
(2.19), and (2.16) in mind, under the only condition (3.7). 
The result is 

1 a,if.l( *(aGh ) ) K'Gh =X -- FL -- -oq 
I' au ap 

(3.8) 

If G corresponds to a Noether transformation, (3.5) 
and (3.6) set the last two terms to zero. Moreover, assume 
oq(q,v,t) to be FL projectable. There is Oqh (q,p,t) (up to 
primary constraints) such that 

oq = FL * (Oqh ). 

Moreover, 

° = ~(FL *(Gh) - G) = W FL *{q,Gh } _ aG 
au av 

(3.9) 

= W FL *({q,Gh } - oq). 

Thus there are functions h iL(q,p,t) such that 

al,b° 
{q,Gh } = Oqh + h 1'_1'_. 

M.. ap 

Batlleetal. 
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Redefining Gh: = Gh - h I'rp~ we have {q,Gh} = Dqh' so 
M" 

that we can assume Gh and Dqh chosen in order that 

Dqh = {q,Gh}. (3.11) 

Therefore, we conclude from (3.9) and (3.11) that (3.8) 
becomes 

(3.12) 

Conversely, suppose we have Gh (q,p,t) satisfying rela­
tion (3.12) and define Dqh' Dq, and G as in (3.11), (3.9), and 
(3.7). Then we have aG lav = W FL * (aGhlap) = W Dq, 
which is (3.6), and the identity for K'Gh [(3.8)] shows that 
(3.5) also holds; that is to say, (3.4) is satisfied. We have 
proven the following theorem. 

Theorem 1: An infinitesimal projectable function 
Dq(q,V,t) is a Noether transformation if there exists 
Gh (q,p,t) such that K- Gh = 0 and 8q = FL *{q, Gh}. . 

Now we make use of this Lagrangian result to derive a 
sufficient condition for a Gh (q,p,t) to generate a Hamilto­
nian DST in the sense that 

(3.13 ) 

Theorem 2: An infinitesimal function Gh (q,p,t) satisfy­
ing K· G h = 0 generates a Hamiltonian DST. 

We call such a DST a Hamiltonian Noether transforma­
tion. We have shown that Dq: = FL *{q,Gh} isa Lagrangian 
DST. Taking into account the equivalence of both forma­
lisms,z we only need show D(aL lav) = FL *{p,Gh}. To this 
end we write the following identity, which can be obtained 
using (2.9) and the chain's rule: 

+(!...+v~)(aG _ WDq). (3.14) 
at aq av 

The last term In (3.14) vanishes because aG I 
av = W(aGhlap) and, since we transform solutions of the 
Euler-Lagrange equations, [L] = O. Then K'Gh = 0 im­
plies 

D aL = FL *{p,Gh}, (3.15) 
av 

so that Theorem 2 is proven. 
Let us observe that if K'G1 = K'Gz = 0, then 

K'{G1,G2 } = 0. Therefore, generators of Hamiltonian 
Noether transformations close under the Poisson bracket. 

Finally, we want to express (3.12) in an equivalent way, 
which will prove to be useful in the case of gauge transforma­
tions. Application of (2.14) to (3.12) shows that 
FL *{Gh'rp~} = 0, that is to say, 

{Gh'rp~} = 0. (3.16) 
M" 

Now (2.13) leads to FL *({Gh,H} + aGhlat) = 0, which 
implies 

( 3.17) 

Conversely, by (2.13), (3.16) and (3.17) imply (3.12). 
Therefore, the following theorem holds. 
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Theorem 3: A function G h (q,p,t) satisfying (3.16) and 
(3.17) generates a Hamiltonian DST. 

It can be shown that these sufficient conditions [( 3.16) 
and (3.17)] are in fact very close to those that are neces­
sary.13 Notice, also, from (3.17) that Gh is a constant of 
motion. Moreover, in a constrained system Gh is a first class 
function because it must be tangent to the final constraint 
manifold. 

IV. HAMILTONIAN GAUGE TRANSFORMATIONS 

The preceding results apply to DST in general dynami­
cal systems. Now we consider the specific case of gauge 
transformations, that is to say, DST depending on arbitrary 
functions and their derivatives. Thus we are necessarily deal­
ing with a constrained system. We will write a generator 
G (q,p,t) of a gauge transformation in the form 

G(q,p,t) = I €( - k(t)Gdq,p), (4.1 ) 
k>O 

where € is an arbitrary function of time and €( - k(t) is a 
primitive of order k. As a result of the arbitrariness of €, 

conditions (3.16) and (3.17) split into 

Go=O, 
M., 

(4.2) 

( 4.3) 

(4.4 ) 

Relations (4.3) and (4.4) can be seen as a mechanism to 
construct a gauge transformation. Since G is first class, the 
Gk are also first class. To be precise, the Gk are first-class 
constraints: Let us prove this inductively; it is obvious for 
Go[ (4.3)]. Suppose we have chosen H to be first class 
(which is always possible; for instance, the H (1+ I) reached 
in Ref. 2). Then if Gk is a first-class constraint, {Gk,H} is as 
well. Therefore, (4.4) implies that Gk + I is also a first-class 
constraint. Notice, also, that Gk+ I + {Gk,H} is a primary 
first-class constraint. 

The algorithm can be applied in the following way (see, 
also, Ref. 14, which proposes an algorithm to construct the 
gauge generator when no second class constraints are pres­
ent): His a first-class Hamiltonian and 

Go = primary first-class constraint, (4.5) 

Gk+ 1 = - {Gk,H} + primary first-class constraints. 
(4.6) 

One must play with this indeterminacy in order to let the test 
(4.2) hold. It is worth observing that the simpler form of a 
primary first-class constraint may not be suitable to begin 
(4.5). 

There is no guarantee that this algorithm has a solution; 
however, it is reached in usual computations. Moreover, in 
these cases one can choose Gk = ° for k>f + 1 (if the stabili­
zation algorithm ends at thefth step). For this reason the 
generator is usually written as 

f 
G= I €(kGI _ k • (4.7) 

k=O 
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v. APPLICATIONS 
A. The Polyakov string 

The Lagrangian density of the Polyakov string is given 
by '5,'6 

2" = ([=g/2)gaP aa x/-tapx/-t 

= (-1I2[=g)(gIlX2 - 2go, (xx) +gooX2). (5.1) 

The canonical momenta are 

a2" - 1 . ' 
P/-t = a../-t = r--;:: (gllx/-t -golx/-t)' 

x v-g 

TIaP = a2" = 0, 
agaP 

so that we obtain the canonical Hamiltonian density 

Jr'e = - ([=glgll)H + (gOllgll)T, 

(5.2) 

(5.3 ) 

where H = ! (p2 + ;2) and T = (px). We also obtain the pri­

mary constraints 

TIOO = TIol = TIll = 0 

whose stability gives 

TIoo = {TIoo,He } = ( - 1I2[=g)H, 

(5.4) 

TIol = {TIoI,HJ = (gol/~ -ggll)H - (llgll)T, (5.5) 

TIll = TI",He = --- -- - - H + -T. . { } - 1 (goo g ) go I 
[=g 2g

" 
g71 i, 

Thus Hand T are independent secondary constraints. As a 
result of the algebra 

{H(u), H(u')} = T(u)au o(u - u') - T(u')aa' 

Xo(u - u'), 

{H(u),T(u')} = H(u)aa 8(u - u') - H(u')aa' (5.6) 

xo(u - u'), 

{T(u), T(u')} = T(u)aa 8(u - u') - T(u')aa' (u - u'), 

no tertiary constraints appear and we are left with five (TIoo, 
TIoI , TI II' H, and T) first-class constraints. 

We have three primary first-class constraints, so we ex­
pect three independent gauge transformations. The algo­
rithm for constructing a canonical gauge generator starts by 
selecting a combination of primary first-class constraints. In 
order to simplify the expressions and taking into account 
that the three primary constraints give only two secondary 
constraints, let us consider the following combinations: 

({Jw = gooTIoo + gOITIol + gil TI II> 

({JI = (2~ -ggoJgoo)TIOI + (2~ -gglllgoo)TI Il , 
(5.7) 

({J2 = [(2~, - goo gil )Igoo ] TIol + (2golg ll lgoo ) TI II> 

which are such that 

;Pw = {({Jw, HJ = 0, 

;PI = {({J"He } = H, ;P2 = {({J2,HJ = T. 
( 5.8) 

Thus we see that the generator starting with ({J w has only one 
piece: 
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Gw = f du Ew(U) (gooTIoo + gOITIOI + gIlTI Il )· (5.9) 

Now let us consider ({JI and apply the algorithm 

Go(u) = ({JI (u), 

GI(u) + {Go(u),He } = f du'(a({Jw(d) 

+ {3((JI (d) + r({J2 (u') j, 

where a = a(u,d), etc. Then 

GI (u) = - H(u) + f du'(aq.>w(d) 

+ {3((JI (d) + r({J2 (u')). 

The next step is 

G2(u) + {GI (u),He } = primary first-class constraints 

or 

G2(u) = {H(u),HJ - f du'(f3H(u') + rT(d)) 

+ primary first-class constraints. 

We need to compute 

{H(u),HJ = - 2Taa( ~ - g) + 2H aa(~) 
gil gil 

- ~ -g aa T+ gOI aaH. 
gil gil 

Thus we realize that we can finish the algorithm with the 
choice 

{3(u,u') = 2Ju (gollgll )8(u - u') 

+ (goJgll) (u)aa 8(u - u'), 

r(u,u') = - 2aa([=glgll)t5(u- u') 

- ([=g /gll )(u)aa 8(u - u'), 

a(u,u') = O. 

Then the generator has two pieces and after integrating by 
parts can be written as 

+ €A( - gOI ({JI + [=g ((J2)]' 
gil gil 

(5.10) 

As a result of our choice (5.7), the consistency condi­
tion (4.2) is trivially satisfied because H, T do not depend on 
g's. Starting with ({J2 we could have constructed 

GB = f dU'[ €B({J2 + EB( - T - aa( ~ g~lg )({JI 

+ aa(~)({JI) + €B( [=g ({JI - ~2)]' 
gil gil gil 

(5.11 ) 

The action of the three generators Gw, GA' and GB on the 
fields gaP (u), X/-t (u) yields 
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ogoo = Ewgoo, 

£ • 2~ -ggo, 
ugOI = Ewgo, + EA ---..!-~~ 

+ EB(:: g~ - g~,) - EBg01 , 

£ . 2~ -ggll 
ug'l = Ewgll + EA .=.!.-~~ 

goo 

+EA( go,gll g~-~g~1 +~g~,) 
goor=g ~ - g r=g 

+ t:B 2go,g" + EB(.fu. g~ - g~l) - 2EBg lI , 

goo goo 
(5.12) 

Our canonical gauge transformations do not have the nice, 
well-known form 

oXJl- = €"oaxJl-' 

oga{:J = Aga{:J + EYayga{:J + aa EYgY{:J + ap EYgay . (5.13) 

This fact was really expected because Eq. (5.13) are not FL 
projectable: They contain the velocities ga{:J' However, a 
change in the arbitrary parameters can always make the con­
nection. In our case the change is given by 

EA = (r=g/gll)~' EB = - E' - (go,/gll)~' 

Ew = A + ~(goolgoo) + ')£J + E'(g~goo) + 2i;1(gO/goo)' 

(5.14 ) 

Substitution of (5.14) in (5.12) gives the covariant 
form (5.13). Notice that relations (5.14) involve non-FL­
projectable functions, as must occur. Also, notice the fact 
that the first-class constraints T, H satisfy a nontrivial alge­
bra, making the first-class primary constraints lP" lP2 enter 
the generator in a definite way and giving the correct gauge 
transformations, so that the canonical gauge generator is not 
simply an arbitrary combination of first-class constraints. 
The first class Hamiltonian we have used is simply the ca­
nonical Hamiltonian because no second-class constraints are 
present. The procedure is less trivial in the example in 
Sec. VB. 

B. The CP ;-1 model. 

The Lagrangian density is '7 

5t' = (DJl-Za )*(DJl-Za ) - A(Z :Za - n/2g) , (5.15) 

where DJl- = aJl- + iAJl- and g 1'<7 = diag( ± ). Here AI' is a 
two-dimensional auxiliary gauge field and A is a field which 
enforces the condition Z :Za = n/2g on the n complex 
fields Za' 

The infinitesimal gauge invariance of the theory is given 
by 
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oZa = - iOZa, oZ: = iBZ:, 

oAI' = a!, B, ol = 0, 
( 5.16) 

where B = B(xo, Xl) = B( 'T,u) is an arbitrary parameter. 
The canonical momenta are 

a5t' nJl- =-.-=0, 
aA I' 

a5t' nA =-.-=0, 
aA 

n _a5t' -Z'* 'Z*A 
a--'-- a-I a 0' n'" a5t' Z· ·Z A a = -. - = a + I a 0' 

aZa az: 
(5.17) 

Thus we obtain the canonical Hamiltonian density 

J¥'c = nan: - iAo(naZa - n:z:) + a, z: a , Za 

+ iA1(Za a, Z: - z: a, Za) +A iZ:Za 

(5.18) 

and the primary constraints 

no=o, n,=o, nA=O. (5.19 ) 

Then the primary Hamiltonian density is 

J¥'p = J¥'c + vono + vln, + VAnA' (5.20) 

where vJl- = AI' and VA = l. After the stability algorithm is 
performed it turns out that the theory contains two first­
class constraints, 

lPl = no, ( 5.21a) 
lP2 = i(naZa - n:z:) - a, n, 

and six second-class constraints, 

XI = Zana + z:n:, 
X2 = AZ:Za - nan: + a1 z: a, Za 

+ iA,(Z: a , Za - Za alz:) -A ~Z:Za' 
(5.21b) 

X3 = nA, 

X4 = Z:Za - n/2g, 

Xs=n" 
X6 = iZa a, z: - iZ: a1 Za + 2A,Z:Za' 

Because the primary constraints n" nA have become 
second class, the arbitrary functions VI = AI' VA = l have 
been canonically determined: 

and 

VI = (g/n)(iZa alna + ill: a , Za - iZ: a , n: 
- illa a , Za + 2A,(Zana + z:n:») 
- a1 Ao=/, (5.22a) 

VA = -n
2g

({X2,Hc } + fdu'V, (o'){X2,Xs})=IA' (5.22b) 

Thus the first-class Hamiltonian density is 

J¥'=J¥'c +/,n, +IAllA' (5.23 ) 

which incorporates the second-class primary constraints in 
the correct way. Now we can begin the algorithm with 

Go(u) = no(u) 
and 
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GI (U) = - {Go(u),H} + primary first-class constraints 

- i(l1aZa - TI~Z~) 

+ al TIl + primary first-class constraints. 

It can be checked that {- i(TIaZa - TI:Z:) + al TII,H} 
= O. Thus the algorithm ends at this stage and the gauge 

generator is 

G = J du[ (lno - iO(TIaZa - TI:Z:) - al OTI I ], 

(5.24 ) 

which gives the correct gauge transformations. In this condi­
tion (4.2) is trivially satisfied in a natural way. 

ACKNOWLEDGMENT 

This work has been partially supported by CAICYT 
Project No. AE 87-0016-3. 

1350 J. Math. Phys., Vol. 30, No.6, June 1989 

'e. Batlle, J. Gomis, J. M. Pons, and N. Roman-Roy, Lett. Math. Phys. 13, 
17 (1987). 

'C. Batlle, 1. Gomis, J. M. Pons, and N. Roman-Roy, J. Math. Phys. 27, 
2953 (1986). 

'J. M. Pons, J. Phys. A: Math. Gen. 21, 2705 (1988). 
4x. Gracia and J. M. Pons, preprint UB-ECM-PF 7/87, Universitat de 
Barcelona. 

'X. Gracia, Universitat de Barcelona, preprint, April 1988. 
OR. Abraham and J. E. Marsden, Foundations of Mechanics (Addison­
Wesley, Reading, MA, 1978), 2nd ed. 

7J. F. Cariiiena, e. Lopez, and N. Roman-Roy, J. Geom. Phys. 4, 315 
(1987). 

"E. Noether, Nachr. Ges. Wiss. Gott. 2, 235 (1918). 
"E. L Hill, Rev. Mod. Phys. 23, 253 (1951). 
IOJ. Gomis, K. Kaminura, and J. M. Pons, Prog. Theor. Phys. 71, 1051 

(1984). 
"K. Kamimura, Nuovo Cimento B 68,33 (1982). 
"J. Gomis, K. Kamimura, and J. M. Pons, Europhys. Lett. 2, 187 (1986). 
"X. Gracia and J. M. Pons, Ann. Phys. 187, 355 (1988). 
14L Castellani, Ann. Phys. 143, 357 (1982). 
"L Brink, P. Di Vecchia, and P. Howe, Phys. Lett. B 65, 471 (1976). 
l0e. Batlle, J. Gomis, and J. M. Pons, Phys. Rev. D 34,2430 (1986). 
17E. Gozzi and A. Guha, J. Math. Phys. 24, 1213 (1983). 

Satlle eta!. 1350 



                                                                                                                                    

ff almost-tangent structures and the Hamiltonization of higher-order field 
theories 

Manuel de Le6n 
CECIME, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid, Spain 

Paulo R. Rodrigues 
Departamento de Geometria, Instituto de Matematica, Universidade Federal Fluminense, 24000 Niteroi, 
Rio de Janeiro, Brazil 

(Received 17 May 1988; accepted for publication 11 January 1989) 

In this paper a new interpretation of the Hamiltonization of higher-order Lagrangian field 
theories is given, introducing a new class of tensor fields of type ( 1, 1) that extends almost­
tangent structures to the tangent bundle of nk velocities. 

I. INTRODUCTION 

This paper is the third contribution to a geometrical 
study of higher-order Lagrangian and Hamiltonian forma­
lisms in many independent variables (see de Leon and Ro­
drigues 1.2 for notations and results). In Ref. 1 we introduced 
an intrinsical version of the Poincare-Cartan form and in 
Ref. 2 we examined a possible relation between extremals 
defined by Langrangian and Hamiltonian variational prob­
lems of higher order. As expected, there is no way to estab­
lish a Legendre transformation between both formalisms 
which is at least a local diffeomorphism: This was examined 
in terms of the geometrical approach of higher-order vari­
ational theory. 

Here we will adopt a different procedure without using 
the variational theory. As remarked in the Introduction of 
Ref. 1, we were inspired by almost-tangent geometry to give 
an intrinsic definition of the Poincare-Cartan form. Here we 
will introduce a new class of tensor fields of type ( 1, 1) given 
by a family of endomorphisms Ja, l<a<n of T(T~ M), 
where T ~ M is the tangent bundle of nk velocities of M. The 
intrinsic formulation of higher-order theories is then clearly 
obtained. For instance, the definition of the Poincare-Car­
tan form involves an operator Jf3 , where!3 is a multi-index 

(!3I,···,!3n) and J/3 = Jf' ... J~". 

Almost-tangent structures were introduced by Clark and 
Bruckheimer3 and Eliopoulos4 around 1960. Klein5 showed 
that almost-tangent structures have an essential role in La­
grangian theories like that of the role of symplectic struc­
tures in Hamiltonian theories (for example, every tangent 
bundle of a finite differentiable manifold is endowed with a 
canonical almost-tangent structure). 

The paper is organized as follows. In Sec. II we recall 
some definitions and results about tangent bundles of nk 

velocities. In Secs. III and IV we examined 1T~ semibasic 
forms and the Legendre transformation defined by such 
forms. Our construction gives a geometrical interpretation 
of the concept of regularity proposed in Ref. 2. We conclude 
the paper by studying the Hamiltonization proposed by Po­
dolski and co-workers6--8 for an electromagnetic theory with 
second-order field variables. 

We would like to remark that our study is developed on 
the bundle J\R n,M) = R /IX T! M. Nevertheless, if we 

consider the more general situation of k-jet prolongations 
f (N,E) oflocally trivial fiber bundles (E, 'fT, N), then Mor­
imotos's9 theory fails since we have no directions on the base 
manifold N for lifting tensor fields vertically. In such a case 
we adopt Saunder's 10 approach using the operators S,o para­
metrized by closed one-forms on N to construct global Poin­
care-Cartan forms. It is easy to see that if N = R n 

, 

E = Rn XM, then Sdx = J; , 1 <a<n, where the star stands 
for adjoint operators acting on forms. 

II. PRELIMINARIES 

Let Mbe a manifold of dimension m and R n the Euclid­
ean space with the coordinates (x I' ... , xn) = (xa ). We do­
note by T ~ M the tangent bundle of nk velocities, i.e., 
T ~ M = J ~ (R n ,M) is the manifold of all jets of order k of 
C'''' mapping from R n to M at the origin OER n • Let us denote 
by 1](n, k) the set of all n-tuples a = (a I' ... , an ) of non­
negative integers such that lal = a l + ... + an <k. We set 

a +!3 = (a I,···,all ) + (!3\,···,!311) = (a 1 + !31,· .. ,an +!3n), 

for all a, /3E1](n, k), 

(a) = (0, ... ,1, ... ,0), 

with I in the ath place. 
If (z4 ) are local coordinates on M, then we denote by 

(~) the induced coordinates on T~ M defined by 

~ (j~u) = (1.) (~)(z40 u) I ' 
a! ax x=o 

where a!=(al)!"'(an )! and a/Jxa=Jlal / 

(Jxl)a'···(Jxn)a". 

Alternatively, we shall use the coordinates (y ~) on 
T~ M, withy: = (a) I ~ . 

As we have seen in Ref. I there exist a family J/3' 
0< 1/3\ < k of canonical tensor fields of type ( 1, 1) on T ~ M 
locally given by 

J/3 = kfl (_J_) ® (d~). 
lal =0 J~+/3 

III. SEMIBASIC FORMS 

Let us denote by 

p~:RnXT~M~RnXT~M, ~:T~M-T~M 
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the obvious projections (r< k), p; = Id R" X 17";. We set 

~: RnXT~M-+T~M 

for the projection given by przop;, where 

prz:R nx T~M-+ T~M. 

Definition: Let A be a one-form on R nX T~M. Then A 
is called 1'T; semibasic ifit vanishes on all vertical vector fields 
with respect to the fibration 

~:R nXT~M-+T~M, 

(xa,y':)lal<k -+ (Y':)laI<r' 

It is easy to see that A is 1'T; semibasic if and only if it is locally 
expressed by 

r 

A= I A~(xa,y%)(dy':), l<A, B<m, O<IPI<k. 
lal =0 

We recall that the 1'T; vertical bundle V = ker T 1'T; is locally 
spanned by the vectors fields ( (J / JXa ), (J / Jy':); 
r+ l<lal<k). 

Theorem: Let 

qT:;M: T* (T~M)-+T~M 

be the canonical projection of the cotangent bundle 
T* (T;'M) onto T~M and Id XqT:,M the obvious induced 

projection 

R nX T* (T;'M) -+R "X T;'M. 

If A is a 1'T~ semibasic form on R II X T ~ M, then there is a 
mapping 

D:R"X T~M-+R nx T* (T~M) 

such that (ld XqT~M)OD=p;. 

Proof.' In fact, D(x,v) = (x,p), wherepET:;(V) (T~ M) 

is determined by 

p(X) = A(x.v) (X), 

where XET
1T

;(V) (T~M), 

T~(X) = X. Then we have 

- k XET(x.v) (R nX Tn M), and 

o 

Corollary: If A is the Liouville form on T * (T ~ M), then 
(przoD) * A = A, where pr2: R n X T * (T~M) 
-+ T * (T ~ M) is the canonical projection on the second fac­
tor. 

Remark: Similarly, we can consider 17"~ semibasic one-
forms on T ~ M and prove that a 17"; semibasic one-form A on 
T ~ M defines a mapping D: T ~ M -+ T * (T ~ M) such that 

qT;'MoD=~. 

Then if A is locally given by 

r 

A = ') A~ (y%)dy':, 
la~O 

we easily obtain that D is given by 

D:(y':)o<lal<k -+ (y,:,A~ )O<lal<r' 

Clearly, we have D* A = A. 
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IV. THE LEGENDRE TRANSFORMATION 

Let us first recall the following construction of fibered 
bundles. Suppose that (Ea, 17"a' N) are fibered bundles, 
l<a<n, and consider the Cartesian product (EI X··· XEn, 

17" I X"'X17"n' NX"'XN) of such bundles. Let ~: 
N-+N X··· XNbe the diagonal mapx-+ (x, ... ,x). Then one 
obtains a fibered bundle denoted by EI + ... + En such that 

is commutative. If each (Ea, 17"a' N) is a vector bundle, then 
EI + ... + En = EI Gl ••• Gl En is the Whitney sum. 

Now, in Ref. 1 we have shown that the Poincare-Cartan 
form is defined by 

n - [k~1 (_1)1/31( 1 )d (d- L)] 
L - 1/3'f;:, 0 (/3 + (a»)! T" JjJ. (u) 

1\ (()a + L((). (1) 

If we use the fact that 

)/3+ (a) = J/3+ (a) - J/3Cba ® dxb, 

then (1) takes the form 

n - [k~1 ( 1)1/31( 1 )d (d L)] 
L- 1/3'f;:,0 - (/3+ (a»)! Tfl JflO{u) 

I\(()a - E L((), (2) 

where the remaining terms are incorporated in the energy 
E L of L after the substitution of)/3 + (a) • At the local level we 
have 

k-I 
nL = I ~+ (a) ()~ I\(()a + L(() 

1/31 = 0 
k-I 

= I ~+ (a) dyt I\(()a - EL((), 
1/31 = 0 

where EL is given by 
k-I 

EL = I ~+ (a)yt+ (a) - L. 
1/31 = 0 

Ifwe set 

(3) 

(4) 

A = kil (- 1)1/31( 1 )d (d L) l<a<n, 
a 1/31 =0 (/3 + (a»)! TfJ JfJ + ,,,) , 

then Aa is locally given by 
k-\ 

Aa = I ~+ (a) dyt. 
1/31 = 0 

Hence one has that Aa is a 17ik
_-" semibasic one-form on 

R nx T~k-IM. From the above theorem there is a fibered 
morphism Da = Lega from R nx T~k-IM to R n 

X T* (T~-IM) such that 

(ld XqT~_'M)OLega =pi~ll, l<a<n, 

which is locally given by 

(xb'Y':)0<lal<2k _ I -+ (Xb'y':,P~ + (a»O<lal<k _ I' 1 <b<n. 

Now, if we take Ea = R nX T * (T~ - 1M), 17"a 
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= Id XqT~ 1M' and N = R "X T~ ~ 1M one obtains n vec­
tor bundles with the fiber T;' ~ IR m, m = dim M. 
Therefore, we may define a fibered mapping 

Leg 

R n X T ~k ~ 1M -> (R n X T * (T ~ ~ 1M) ) 

EIl···EIl(R"XT*(T~~IM)) (5) 

defined by 

Leg(x,v) = (Leg l (x,v), ... ,Legn (x,v)). 

We call Leg the Legendre transformation of L. For example, 
if k = 2, Leg is locally given by 

( A) ( A f3+ (I)) ( A f3+ (n))) Xb,Ya -> Xb'Yf3,PA , ... , Xb'Yf3,PA , 

0<lal<3, 0<1111<1, 
where 

(a) _ (~) _ d ( JL ) PA - A To A ' 
JY(a) JY(a) + (b) 

p~a) + (b) = ( A
JL 

). 
JY(a) + (b) 

(6) 

As R "X T~k ~ I M and the Whitney sum on the rhs of 
(5) arefibered over R nX T~~ 1M we may examine the rank 
of each Lega (i.e., the rank of the functions p~+ (a), 

0< lal <k - 1) with respect to the variables y:;, 
k< tal <2k - 1. If we suppose that for every a = 1, ... ,n the 
rank is maximal, then Leg is a submersion. This construction 
gives a geometrical interpretation of the concept of regular­
ity proposed in Ref. 2. If Leg is a submersion, then taking a 
section s of Leg, one obtains the Hamiltonization of the theo­
ry by defining H = E LOS. 

Remark: The reader is invited to compare the present 
procedure with the one proposed by Shadwick. II 

v. THE HAMILTONIZATION OF PODOLSKI 

In what follows we will set (a l ) + ... (an) 
= (al, ... ,an ). We will take k = 2, n = 4, and m = 4. The 

Podolski formalism (see, for example, de Leon and Rodri­
gues,12 p. 145 or Podolski and Schwed8

) starts with a La­
grangian L = L (y:;), 0< I a I <2, where the independent vari­
ables (XI' X2, X3, X4 = iet) are implicitly defined in L. The 
Podolski Hamiltonization is obtained by the introduction of 
the coordinates qA = yA. The momenta are defined by 

P411 = :~ - (:J(:~) - (J~J(J~~J' (7) 

JL 
PA12 = JqA' 

where the dots are time derivatives and 1 <.i<3. The Hamil­
tonian is then defined by 

H=PA/lqA +PA12qA -L. (8) 

In what follows it is convenient to use the relations 
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. -1[( JL) ~ ( J )( JL )] PAil = (Ie) --A- - L -- --A- , 
JY(4) b~ I JXb JY(4b) 

( . 2)~1( JL ) PA/2 = (Ie) -A- . 

JY(44) 

Thus using our previous notations (6) we have 

(ie)PAII =p~41, (ie)2pA/2 =p~44) 

and the Hamiltonian is 

H = p~4)y~) + p~44)Y~4) - L. (9) 

Now, we may interpret (8) or (9) as follows. If H is only a 
function of (yA, Yt!) ,p~4),p~44)), then we are in the presence 
of a second-order theory, with the Legendre transformation 
defined on the tangent bundle of order 3 with values on the 
cotangent bundle of TM: 

Leg: nM-> T * (TM) 

(since the Hamiltonization is only performed with a single 
independent variable). The map Leg is the Legendre trans­
formation previously studied by the present authors in the 
context of higher-order particle mechanics (see de Leon and 
Rodrigues,12 p. 108). However, Podolski considered the 
Hamiltonian (9) as being of the type 

(10) 

In such a case the Hamiltonization is obtained by pulling 
back the original Lagrangian L defined on T~M to T!M 
via the canonical projection p~. The Legendre transforma­
tion for (p~ ) * L is then a map 

Leg:nM -> T * (T~M) Ell··· Ell T * (nM) (four-times), 
(11 ) 

which is not a submersion. In fact, we consider only the 
fourth term in the Whitney sum on the rhs of ( 11 ), for which 
the local coordinates are (y:;, p~ + (4)), 0< lal <2. Then we 
consider a section S4 defined on some submanifold of 
T * (T~M), locally characterized by constraint relations of 
the type 

p~a) = p~ab) = 0, 1 <a, b<3. 
ACKNOWLEDGMENT 

One ofthe authors (PRR) gratefully acknowledges the 
hospitality provided by CECIME, Consejo Superior de In­
vestigaciones Cientificas, Spain, where this work has been 
performed. 

The work of PRR was partially supported by CNPq­
Brazil, Proc. MA 30.1115/79. 

'M. de Leon and P. R. Rodrigues, Lett. Math. Phys. 14, (4), 353 (1987). 
2M. de Leon and P. R. Rodrigues, to be published in Bol. Acad. Galega de 
Ciencias. 

3R. Clark and M. Bruckheimer, C. R. Acad. Sci. Paris 251, 627 (1960). 
4H. Eliopoulos, C. R. Acad. Sci. Paris 255, 1563 (1962). 
'J. Klein, Ann. Inst. Fourier (Grenoble) 12, 1 (1962). 
6B. Podolski, Phys. Rev. 62, 68 (1942). 
7B. Podolski and C. Kikuchi, Phys. Rev. 65, 228 (1944). 
8B. Podolski and P. Schwed, Rev. Mod. Phys. 20,40 (1948). 
9 A. Morimoto, Prolongations of geometric structures, Lect. Notes, Math. 
Inst., Nagoya Univ. (Nagoya, 1969). 

IOD. J. Saunders, J. Phys. A: Math. Gen. 20,339 (1987). 
"W. F. Shadwick, Lett. Math. Phys. 6,409 (1982). 
12M. de Leon and P. R. Rodrigues, Generalized Classical Mechanics and 

Field Theory, North-Holland Math. Ser. 112 (North-Holland, Amster­
dam, 1985). 

M. de Le6n and P. R. Rodrigues 1353 



                                                                                                                                    

The nonexistence of the path-space measure for the Dirac equation 
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It is proved that the path-space measure for the Dirac equation in four space-time dimensions 
does not exist. The origin of the nonexistence of the measure turns out to be the dependence of 
the solution on the first derivative of the initial condition. 

I. INTRODUCTION 

Consider the Cauchy problem for the Dirac equation 
describing the evolution of a free relativistic particle in two 
space-time dimensions, 

[a, +aax]tP(t,x) = -imfN(t,x), 

tP(O,x) = cp(x), 
(1) 

where tP and cp are C2-valued functions, and a,/3EC2X2 are 
constant matrices satisfying the relations a 2 = /3 2 = 1 and 
a/3 + /3a = 0. There exists a C2x2 _valued Borel measure v, 
on the space of paths C, = {XEC( [O,t ],lR): X(t) = o}, 
such that the solution of Cauchy problem ( 1) is given by the 
formula 

tP(t,x) = r dv,(X)cp(x+X(O»). 
Jet 

(2) 

There are several methods of constructing the measure 
v,. The first to define v, was Ichinose, ' who applied a Riesz­
type representation theorem. Blanchard et al. 2 obtained a 
representation of the solution to (1) in terms of the probabi­
listic expectation and a Markovian stochastic process asso­
ciated with Dirac equation (1). This representation leads 
immediately to a definition of the measure v" and to formula 
(2). Zastawniak3 gave another equivalent definition of v" 
which was obtained by considering the expansion of the so­
lution ¢ in powers of the mass m of the particle. It turns out4 

that the measure v, is concentrated on the set of so-called 
zigzag paths, i.e., such functions XEC, that the derivative 
X'es) exists for all but a finite number ofsE[O,t] and equals 
± 1 times the speed of light (which is 1 in our units). This 

can be regarded as a formulation of the phenomenon of the 
Zitterbevegung of a Dirac particle in terms of the path-space 
measure. The integral with respect to the matrix-valued 
path-space measure v, has got all the properties suggested by 
Feynman in his brief descriptionS of the path integral for the 
Dirac equation. Moreover, if the particle is subjected to an 
external electromagnetic field, the Dirac equation becomes 

[a, - iV(t,x) ] tP(t,x) 

+a[ax -iA(t,x)] = -im/3tP(t,x). 

With V, A: [0,00) X IR ..... R. being arbitrary (sufficiently reg­
ular) electromagnetic potentials, the solution ¢ to the initial 
problem ¢(O,x) = cp(x) is given by the formula6 

a) On leave from Institute of Mathematics, Jagiellonian University, Rey­
monta 4,30-059 Krakow, Poland. 

tP(t,x) = fe, dv, (X)exP[i f V(s,x + X(s»)ds 

+ i f A (s,x + Xes) )dX(s) ]cp(X + X(O»), 

which resembles the famous Feynman-Kac-Ito formula. 7 

It is crucial for the construction of the measure v, that 
there exists an L 00 estimate of the solution to Cauchy prob­
lem (1). According to Ichinose,8 the above results seemed 
not to generalize easily to the four-dimensional case for the 
lack of a theorem on the L 00 -well posedness of the Cauchy 
problem for the Dirac equation in four space-time dimen­
sions.9 The aim of the present paper is to prove that, in fact, 
such a generalization is impossible. To be more precise, let us 
write down the initial Cauchy problem for the Dirac equa­
tion in four space-time dimensions, 

(al + a'V)¢(t,x) = - im/3¢(t,x), 

tP(O,x) = cp(x). 
(3) 

Here cp and ¢ are C4 -valued functions, and 
a'V = a,ax, + a 2aX1 + a 3ax" where a" a 2 , a 3,/3EC4X4 are 
constant matrices satisfying the relations /3 2 = 1, 
a k/3 + /3ak = 0, and aka, + a,ak = Dk,/ for k,l = 1,2,3. To 
generalize the results of Refs. 1-3, one should look for a 4 X 4 
matrix-valued measure v, that is defined on the path-space 
C, = {XEC([0,t],lR3

): X(t) = O} and satisfies a formula 
analogous to (2). It is proved in the next section that such a 
measure v, does not exist. 

It will be convenient to use the so-called Weyl represen­
tation of the matrices a k and /3, 

(4) 

where 1 and ° stand for the identity and null 2 X 2 matrices, 
respectively, and for k = 1,2,3, Uk are the Pauli matrices. 
The Cauchy problem (3) for the Dirac equation in the Weyl 
representation can be rewritten in the form 

(al +ju'V)tPj(t,x) = -imtP_j(t,x), 

tPj (O,x) = Cpj (x), 

wherej = ± 1, and tPj, Cpj are C2-valued functions. 

(5) 

Ifthe mass parameter m = 0, problem (5) can be under­
stood as a system of two Cauchy problems for two indepen­
dent differential equations, called the Weyl equations. The 
problems are indexed by j = ± 1, and have the form 
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(a, + j(T"V)t/J(t,x) = 0, 

t/J(O,x) = rfJ(x), 
(6) 

where both the solution t/J and the initial condition rfJ are C2
_ 

valued functions. The next section will start with a discus­
sion of the Weyl equation, in which case we shall show that 
there is no corresponding 2 X 2 matrix-valued path-space 
measure. The prooffor the Weyl equation shows clearly the 
reason why such a measure does not exist. Afterwards, using 
an expansion of the solution in powers of the mass m, we 
shall extend the argument to the Dirac equation. 

The theorem on the nonexistence of the path-space mea­
sure for the Dirac (and Weyl) equation is similar to the well­
known result 10 that the path-space measure does not exist 
for the Schrodinger equation. Our proof starts similarly as 
that for the Schrodinger equation. Assuming that a measure 
v, that satisfies (2) exists, we can show that 

sup{ IL. dv,(X)rfJ(X(O») I : rfJECO' (lR3,C
4),IIrfJIL", <I} = 00, 

(7) 

11'11 00 being the supremum norm. But this is impossible, 
since the integral in (7) can be estimated in terms of the total 
variation of the measure v, and the supremum norm of rfJ. 
We shall however see that the proof that the supremum in 
(7) is infinite is completely different from the known proof 
for the Schrodinger equation. The main difference is that the 
solution of the Dirac (and Weyl) equation apparently in­
volves the first derivative of the initial condition. It is the 
dependence of the solution on the derivative of the initial 
condition what gives rise to the infinity of the supremum in 
(7). Obviously, such a proof would not work for the Schro­
dinger equation. In this case the solution does not depend on 
the derivative of the initial condition, so the origin of the 
infinity in (7) and of the nonexistence of the path-space mea­
sure must be different. Essentially, for the Schrodinger equa­
tion, the infinity comes from the oscillating exponential 
which appears in the integral kernel of the evolution opera­
tor. 

Let us note that for the Dirac equation in two-dimen­
sional space-time, the solution does not depend on the deriv­
ative of the initial condition, either. One can write the expan­
sion of the solution in powers of the mass. It turns out to have 
the same form as expansion (14) given in the next section, 
but formula (10) defining Wi (t) must be replaced by the 
simple expression [Wi (t)rfJ] (x) = rfJ(x - jt). There are no 
derivatives of the initial condition in this expression. The 
supremum in (7) can easily be shown to be finite and, as we 
know, the corresponding path-space measure does exist. In­
cidentally, in the two space-time dimensional case, the ex­
pansion in powers of the mass can be used to construct the 
measure. I I 

Before we proceed to the next section, we would like to 
fix the notation we are going to use. For ZEC", let Izi = max 
X {Iz; I: i = 1,2,3, ... ,n} be the maximum norm, and let 
IIrfJlloo = sup {lrfJ(x) I: xElR3} denote the supremum norm of . 
a bounded function qJ from lR3 to Cn 

• For a C-valued measure 
v on a IT-algebra .I, the total variation of v is given by the 
formula 
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var(v) =supLtllv(A;)I: A I.A2, ... ,An 

are disjoint sets from .I} . 
For a cnxn -valued measure v, the total variation is defined 
as the maximum of the total variations of the n2 entries of v, 

var( v) = max{ var( v jJ ): i,j = 1,2,oo.,n}. 

II. THE NONEXISTENCE OF THE MEASURE 

The following theorem states the nonexistence of the 
path-space measure for the Weyl equation. 

Theorem 1: There is no such C2 x 2 -valued measure v, on 
the path-space C, = {XEC( [O,t ],R3): X(t) = a} that for 
all smooth functions with compact support qJEC 0' 
X (R3,C2

), the formula 

t/J(t,x) = r dv,(X)rfJ(x + X(O») Je, (!t ) 

holds, t/J being the solution to the Cauchy problem (6) for 
the Weyl equation with the initial condition rfJ. 

Proof We shall prove, that if there exists a C2X2 -valued 
measure v, on the path-space C, such that the solution to the 
Cauchy problem (6) is given by equality (8), then 

sup{ IL, dv,(X)rfJ(X(O»)I : rfJECO' (lR
3
,C

2 )'IIrfJII 00 <I} 
= 00. (9) 

On the other hand, each of the four entries of the 2 X 2 ma­
trix-valued measure v, is a C-valued measure, hence its total 
variation is bounded. 12 The estimate 

I L. dv, (X)rfJ(X(O») 1<2 var( v,) IIrfJII 00 

holds. The factor 2 comes from the multiplication of a vector 
in C2 by a matrix in C2 x 2 under the integral sign. Obviously, 
the estimate is in contradiction with (9). 

Now, we shall prove that the supremum in (9) is infi­
nite. For j = ± 1 and tER, let us introduce an operator 
Wi (t) from C 2 (R3,C2

) to C I (R3,C2
) such that 

[ Wi (t)rfJ] (x) = (a, - ja-V)t L rfJ(x + tn)dA,(n), (10) 

where S is the unit sphere in R3, A. denotes the normal (i.e., 
divided by 41T) Lebesgue measure on S, and n stands for a 
unit vector belonging to S. If rfJEC 2 (R3 ,C2

) is the initial con­
dition of the Cauchy problem (6) for the Wey I equation, 
then the function t/J(t,x) = [Wi (t) rfJ] (x) turns out to be its 
solution. Indeed, it follows immediately from (10) that 
t/J(O,x) = [Wi (O)rfJ ](x) = rfJ(x), and by the Poisson for­
mula, 13 the function u: [0,00 ) X R3 ..... C2, defined by the equa­
lity 

u(t,x) = t L rfJ(x + tn)dA.(n), 

satisfies the Cauchy problem for the wave equation 
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(a~ - .:l)u(t,x) = 0, 

u(O,x) = 0, 

a,u(o,x) = tP(x). 

The relation between "p and u is "p(t,x) 
= (at - j(T"V)u(t,x). Since (a, + jl,.V)(a, - ju-V) 
= (a; - .:l), it follows that "p satisfies the Cauchy problem 
(6). 

Consider a sequence of initial conditions ¢/: lR3 
-> C2 

such that for k = 1,2,3, ... , and xElR3
, 

(10 

where v = (1,1) T EC2
, andt: lR- lR isa function of class COO 

such that It(r) 1<1 for all rElR, t(r) = 1 if Irl is not greater 
than t, and t(r) = ° if Irl is not less than 2t. Obviously, 
tPkEC 0' (lR3,C2

) and IItPk ILx> < 1. Moreover, if the Euclidean 
norm of XElR3 is not greater than t, then VtPk (x) 
= 2ikxtPk (x). Using formula (to) we get for any t;;;>O, 

j = ± 1, and k = 1,2,3, ... , 

[»j(t)tPk] (0) = (1 + 2ikt)exp(ikt 2)v. (12) 

Let "pk (t,x) = [»j (t)tPk ](x) denote the solution to 
Cauchy problem (6) with the initial condition ifJk. It follows 
from (12) that l"pk (t,O) 1-+ 00 as k -+ 00 and so, if a measure 
v, satisfies formula (8), then the supremum in (9) is infinite. 
Theorem 1 is proved. 0 

Weare now ready to prove the theorem on the nonexis­
tence of the path-space measure for the Dirac equation in 
four space-time dimensions. 

Theorem 2: There does not exist a C4 x 4 -valued measure 
V t on the space of paths Ct = {XEC( [0,t],lR3

): X(t) = O} 
such that for any smooth function with compact support 
tPEC 0' (R3,C4

), the formula 

"p(t,x) = r dvt(X)¢(x+X(O» Jc, 
(13) 

holds, where "p is the solution to the Cauchy problem (3) for 
the Dirac equation in four space-time dimensions. 

Proof: Since all representations of matrices aj and {3 are 
unitarily equivalent, 14 it suffices to prove the theorem under 
the assumption that aj and {3 are given by formulas (4), i.e., 
in the Weyl representation. 

First of all let us show that for any functions tP + and tP­
in C 2 (R3,C2

), the following series converges for all t;;;>O, 
xER3, andj = ± 1: 

"pj(t,x) = f (- im)n r dSn r''' dsn_ 1 '" r" dS l 
n ~o Jo Jo Jo 

X[»j(t-2
I
tl (_on+ISI)tPj(_l)"](X) 

(14) 

and the functions "p+ and "p_, defined by (14), belong to 
C I ([0,00) XlR3,C2

), and satisfy the Cauchy problem (5) for 
the Dirac equation in the Weyl representation. 

Let K be a compact set contained in [0,00) X lR3
. Then 

the setAK = U{x + [ - t,t]n: (t,x)EK, nES} is a compact 
subset oflR3

. Using definition (to) of the operator »j (t), it 
is not difficult to prove that there exists a constant MK > ° 
such that 

sup 1[»j(s)tP] (x) 1 <MKsup [ltP(x)1 + IDtP(x) I]' 
(',x)EK xEAK 

(15) 

sup la,[»j(s)tP] (x) I <MKsup [1D(J(x) I + ID1p(x)I], 
(t,x)EK xEAK 

- t<s<t 
(16) 

sup IV[»j(s)tP](x)I<MKsup [lDtP(x) I + ID2tP(x)l]' 
{I,x )EK XEA K 

-t<s<t 
(17) 

DtP and D 2tP being the first and second differentials of tP, 
respectively. Let us observe that if ° < S I < S2 < ... < S n < t, 
then - t < t - 2~7~ I ( - l)n + lSI < t. Hence it follows from 
estimate ( 15), that for all (f,x) EK, the nth term of expansion 
(14) is bounded by MKRmnTn/n!, where 
R = sup{ltPj(x) I + IDtPj(x)l: xEA K, j= ± n, and 
T = sup{t: (t,x)EK}. Therefore expansion (14) converges 
uniformly for (t,x)EK. Analogously, estimates (16) and 
(17) give the uniform convergence for (t,x)EK of the series 
of derivatives with respect to t and x of the terms of expan­
sion ( 14). It follows that "p + and "p _ belong to 
C 1([0,00)XlR3,C2

) and for all (t,X)E[O,oo)XlR3 and 
j = ± 1, the following series of derivatives are convergent to 
the derivatives of "pj: 

= -im f (_im)n r dsn r'" dSn_ 1 •• , rs

, dS1 [»j(-t+2 ± (_on+ISI)tP_j(_I)n](X) 
n = 0 Jo Jo Jo I ~ I 

(18) 

and 

u-V"pj(t,x) = f (-im)n rdsn r'"dsn_ I '" rS

'dS 1U-V[»j(t-2 ± (_l)n+ls1 )ifJj(_ll"](X). 
n = 0 Jo Jo Jo 1= 1 

(19) 
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From the proof of Theorem we have 
(at + j(rV) [nj (t + s)¢l ±j] = O. From definition (10), 
we can deduce easily that nj ( - t) = W _ j (t). Thus we get 
from (4), 05), and (6) that indeed the functions tP + and 
tP _ solve the Cauchy problem (5) for the Dirac equation in 
the Weyl representation. 

Next, we consider a sequence of initial conditions 
¢lJEC 0' (lR3,C2

), where j = ± 1, k = 1,2,3, ... , and 
¢l"+ = ¢lk_ = ¢l\ ¢lk being the function defined by formula 
( 11 ). Let tPk = (tPk+ ,tPk_ ) be the solution to Cauchy prob­
lem (5) for the Dirac equation with the initial condition 
¢lk = (¢lk+ ' ¢lk_ ). From (14) and the uniqueness of the so­
lution to the Dirac equation, we get 

tPJ(t,O) = f (- im)n (' dSn ('n dSn_
1 

••• (S'ds
l 

n=O Jo Jo Jo 

x[ nj(t-2
/
tl (-I)n+lsl)¢l~_l)n](O). 

(20) 

Let us observe that for n> 1, the nth term of expansion (20) 
is bounded by (t + 1) t n 

- I mn / (n - I)!. Indeed, setting 
u = t - 2l:7= I ( - 1)n+ lSI and using formula (2), we have 

I (- im)n L dSn f" dsn _ I '" f'dS I 

x[ nj(t-2
/
tl (_l)n+ls, )¢l:C_Il,,](O)1 

<~ (' dSn (''' dS
n 

_ I 

2 Jo Jo ... f' ds21f du(1 + 2imu) 

xexp(imu2
) I 
( t)"-I <m (t + 1) -,,-m __ _ 
(n - 1)! 

(21) 

We put here a=t-2l:7=2(-1)n+lsl and b=t 
- 2l:7= 3 ( - 1)n + lSI for simplicity. The last inequality in 
(21) holds, since lal<t, Ib Iq, and 

lib duO + 2imu)exp(imu2) I 

lib • 2 ib 
dexp(imu2) < du exp(lmu ) + du ---=----'-

a a du 

<Ial + Ib 1 + 2<2(t+ 1). 

It follows that the sum over n> 1 in expansion (20) is for all 
k = 1,2,3, ... bounded by m(t + 1 )emt

• By formula (12), the 
leading term (for n = 0) in expansion (20) is 
[nj (t)¢lJ](O) = 0 + 2ikt)exp(ikt 2)v, and so it tends in 
norm to infinity as k -+ 00. Therefore 1 tPk (t,0) 1-+ 00 as 
k -+ 00. The same argument as for the Weyl equation (see the 
proof of Theorem 1) shows that this is in contradiction with 
the existence of a path-space measure V t satisfying formula 
(13). The proof is completed. 0 

Remark: Let us note that in the proofs of Theorems 1 
and 2, we used only values of the solutions ¢ (t, . ) calculat­
ed at one fixed point x = O. We are allowed to do that, since 
all the functions tPk(t,,) are continuous (in fact they are 
smooth functions with compact supports). 
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III. CONCLUDING REMARKS 

Despite the fact that for the Dirac equation in two space­
time dimensions the path integral can be understood as an 
integral with respect to a well-defined path-space measure, it 
has been proved in Sec. II that this is no longer true in four 
space-time dimensions. This motivates the need for a defini­
tion of a relativistic path integral which is not based on the 
measure theory. The analogy with the Schrodinger equation, 
for which the path-space measure does not exist either, sug­
gests that one could apply methods developed for the Schro­
dinger equation. However, since there are different reasons 
why the path-space measure does not exist for the Dirac and 
Schrodinger equations, the analogy should be expected to be 
very limited. 

As an example let us take the method of oscillatory inte­
grals, which gives a very useful definition of the path integral 
for the Schrooinger equation. IS Since this method is based on 
the specific form of the integral kernel of the evolution oper­
ator for the Schrooinger equation involving oscillating ex­
ponentials, it is unlikely that it would work for the Dirac 
equation. 

The path integral for the Schrooinger equation can also 
be defined by means of the analytic continuation of the path 
integral for the diffusion equation, i.e., the integral with re­
spect to the Wiener measure. A relativistic analogy of this 
method was suggested by Kac et al., 16 who observed that the 
path integral for the Dirac equation in two space-time di­
mensions can be regarded as the analytic continuation in 
mass of a path integral for the telegrapher's equation. Let us 
note however, that the proof of Theorem 2 still works if the 
non-negative mass parameter m is replaced by any complex 
number z, which means that in four space-time dimensions 
there is no relativistic analogy (in the sense ofKac et al. 16

) of 
the Wiener measure. Therefore it seems impossible in four 
space-time dimensions to use the analytic continuation to 
define the relativistic path integral along the same lines as 
Kac et al. 16 did in the two-dimensional case. Naturally, this 
does not exclude the possibility that a definition based on 
another scheme of analytic continuation may be available. 

Last bu t not least, there is the method of approximation 
of the path integral by integrals over finite-dimensional 
spaces of polygonal paths. In connection with this method, 
we would like to mention two different schemes of approxi­
mation of the solution to the Dirac equation in four dimen­
sions: the first one attributable to Suarez, 17 and the other one 
by Jacobson. IS The idea of the latter one is closer to Feyn­
man's original concepts. 19 Both of the schemes involve poly­
gonal paths whose speeds exceed the speed oflight. This is a 
common feature of the approximation schemes for the Dirac 
equation, but its physical interpretation is rather unclear. 
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Stochastic field theory at finite temperature, when it is formulated from stochastic mechanics, 
which incorporates Brownian motion in both the external, as well as the internal, space of a 
particle, and the external and internal fields, and which are written as thermal doublets, gives 
rise to finite temperature quantum field theory in Minkowski space. The Haag-Hugenholtz­
Winnik, (HHW) formalism of modular conjugation and the Tomita-Takesaki theory of 
modular Hilbert algebra then follow from this finite temperature quantum field theoretical 
formalism. It is shown that there is an inherent discrete Z2 symmetry among the fields of the 
doublet, and the equilibrium condition is ensured by this symmetry. When this symmetry is 
spontaneously broken, thermodynamical equilibrium is destroyed. 

I. INTRODUCTION 

In the previous paper, I we have tried to show that in 
stochastic field theory at finite temperature, when it is con­
structed from stochastic mechanics where it is taken that 
there are universal Brownian motions in the external space 
as well as in the internal space of the particles, the field func­
tions associated with the internal space variables may be re­
lated with the modular conjugation operation of the HHW 
formalism as well as the Tomita-Takesaki theory of modu­
lar Hilbert algebras. This helps us to study thermofield dy­
namics as formulated by Takahashi and Umezawa,2 where a 
new tilde operation is introduced in terms of the stochastic 
fields associated with the internal variables. In fact, in Ref. 1, 
it has'been shown that thermofield dynamics can be refor­
mulated in terms of stochastic field theory at finite tempera­
ture, and the real-time Green's functions can be derived 
when we write the field functions associated with the exter­
nal space-time and internal space-time as thermal doublets. 

Recently Niemi and Semenoff 3 have formulated finite 
temperature quantum field theories in Minkowski space 
(real time) using Feynman path integrals. It has been shown 
that at nonzero temperature, a new field arises which plays 
the role of a ghost field, and a new discrete Z2 symmetry 
arises. This thermal Z2 symmetry actually relates the time­
reversal invariance of the two fields-the physical field and 
its conjugate ghost field. Thermodynamical eqUilibrium is 
destroyed when this Z2 symmetry is broken. 

In this paper, we shall show that the Niemi-Semenoff 
formalism is equivalent to thermofield dynamics when we 
interpret the latter with the stochastic field theory at finite 
temperature involving fields in the external and internal 
space, and the thermal Z2 symmetry for the equilibrium con­
dition is essentially related with the tilde operation associat­
ing the stochastic external and internal fields. In this sense, 
Z2 symmetry introduced by Niemi and Semenoff is found to 

be isomorphic with the modular conjugation operation of 
Haag, Hugenholtz, and Winnik, and it finds its relevance in 
the Tomita-Takesaki theory of modular Hilbert algebras. In 
this way the real-time formalism of finite temperature quan­
tum field theory is found to be associated with the equilibri­
um conditions in quantum statistical mechanics. 

It may be recalled here that when the stochastic nonlQ­
cal field is written as a product function of the external and 
internal fields, the correlation functions we obtain involve 
imaginary time. The correlation function involving only ex­
ternal fields can be obtained when we set that the internal 
time variable vanishes and the internal space variables are 
integrated out. Thus a conventional Euclidean field theory 
can be constructed from stochastic fields. However, as point­
ed out by Guerra and Ruggiero,4 this Euclidean field theore­
tic formalism has a real-time interpretation in the sense that 
a stochastic field can be generated from stochastic oscillators 
in real time, as is considered in stochastic mechanics.5 In 
Ref. 1, we have shown that this inherent real-time formalism 
can be explicitly recovered when we write the external and 
internal stochastic fields as thermal doublets. Indeed it is 
essential also at finite temperature to write them as doublets, 
as the temperature effect on the external and internal fields 
may be different. In Ref. 1, it has been shown that an aniso­
tropic feature in the internal variable gives rise to a fermion. 
So it may happen that at finite temperature this anisotropic 
feature is destroyed, which means that the thermal doublet 
will have different statistics. Thus we find that this thermal 
doublet formalism for the external and internal fields is a 
necessary requirement to study thermal effect and equilibri­
um condition. This helps us to relate the stochastic field 
theoretic formalism with thermofield dynamics of Takaha­
shi and Umezawa, as well as with the Niemi-Semenoff for­
malism of Z2 symmetry, and a unified picture emerges for 
finite temperature quantum field theory. 

In Sec. II, we shall recapitulate certain results as derived 
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in Ref. 1 to show the association of stochastic fields with 
thermofield dynamics. In Sec. III, we shall study the equilib­
rium condition in terms of this stochastic field theory at fi­
nite temperature, and we shall point out its association with 
the Haag-Hugenholtz-Winnik (HHW) formalism of mo­
dular conjugation and the Tomita-Takesaki theory ofmo­
dular Hilbert algebras. In Sec. IV, we shall show the equiv­
alence of this equilibrium condition with the Niemi­
Semenoffformalism of Z2 symmetry. 

II. STOCHASTIC FIELD THEORY AT FINITE 
TEMPERATURE AND THERMOFIELD DYNAMICS 

We have recapitulated certain results of Ref. 1 for com­
pleteness. Nelson5 developed a quantization procedure 
which is based on Brownian motion processes evolving in 
real time. But the major difficulty in Nelson's procedure is 
that we do not know how to have a relativistic generalization 
of this and achieve the quantization of a Fermi field. In a 
recent paper,6 it has been shown that in Nelson's formalism, 
the relativistic generalization as well as the quantization of a 
Fermi field can be achieved when an anisotropy in the inter­
nal space of a particle is introduced and it is taken into ac­
count that there are Brownian motions in both the external 
and internal space. In view of this, we denote the configura­
tion variables as Q(t,so), where So is the fourth component 
(real) of the internal four-vector sP' which is considered to 
be the attached vector to the space-time pointxp' We assume 
that Q(t,So) is a separable function and can be denoted as 

Q(t,So) = q(t)q(So)' (1) 

The process Q(t,so) is assumed to satisfy the stochastic dif­
ferential equations 

dQj (t,so) = bj(Q(t,so),t,soldt + dWj (t), 

dQj (t,so) = b ;(Q(t,so),t,soldso + dWj (So), 

(2) 

(3) 

where bj(Q(t,so),t,sol and b ;(Q(t,So),t,So) correspond to 
certain velocity fields and dW j are independent Brownian 
motions. It is assumed that dWj (t) [dw j (So)] does not de­
pend on Q(S,S ') for S<t(S I <So), and the expectations have 
the following values: 

(dw j (t» = 0, 

(dw j (t)dwj (t ') > 

= (fzlm)D,/j(t - t ')dt dt I, 

(dw j (So» = 0, 

(dw j (so)dwj (s b) > 

= (fzlrf)DijD(so - s b )dso ds b, 

(4) 

where fz is Planck's constant divided by 21T and 1To is a suit­
able constant having the dimension of m. The description is 
asymmetrical in both "external" and "internal" time but we 
can also write 

dQj (t,so) = b ~(Q(t,so),t,soldt + dw~ (t), (5) 

dQj (t,So) = b ;*(Q(t,So),t,soldso + dwr(so)' (6) 

where w* has the same properties as W except that dw'f'(t) 

[dw~(So)] are independent of Q(S,S') with S;;.t, S'>So. 
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From the stochastic equations considered here, the fol­
lowing moments can be derived. 

(Qj (t,So)) = 0, 

(Qj (t,So)Qj (t I,S b» 

= (fzI2mw) (fzI2rfw' )8ije- ,",,-t')e - '0' (so - sf,) 

(7) 

Indeed this follows from the fact that Qi (t,so) can be written 
in a separable way qi (t)qi (so) as we have assumed earlier, 
and so we can utilize the results for the moments of the qi 
derived by Abers and Lee7 as well as by Moore8 

(qi(t» =0, 

(qi(t)qj(t'» = (fzI2mw)Dije- W
(t-t') 

(8) 
(t> t'). 

These results can be extended to the variables qi (So) in an 
analogous way: 

(qi (so» = 0, 

(qi(So)qj(sb» = (fz12rfw' )Dije-'O'(So-!;(,) (9) 

(So>s b), 

Let {ei (x)} denote the complete orthonormal set of eigen­
functions of the three-dimensional Laplacian - /1, 

/1ei (x) = -k;ei(x). (10) 

Also we denote {ej(~)} as the complete orthonormal set of 
eigenfunctions of the three-dimensional Laplacian - /1' in 
terms of the variables Si' so that 

/1'e/t) = -1TJej(~)' 
Now we can construct a stochastic field which can be ex­
pressed as an orthonormal expansion in terms of q i (t) , 
ei(x), qj(So), ej(~)' 

1>(x,t,s) = L qj (t)ei (x)qj (so)ej (~). (11) 
iJ 

Now from the moments of qi(t), qj (So), we can determine 
the moments of 1> (x,t,s), 

(1)(x,t,s)) = 0, 

(1)(x,t,s)1>(X' ,1 ',s ') ) 

= _1_ f d 3k eik(X - X')g(t - t ') 
(21T)3 

X_1_ f d 3:ff ei1r(t-l;')g( eo _ eo' ) 
(21T)3 ~o ~o 

= _1_ f d 4k eifk,(x - x')} ._1_ f d 41T eittT,(!; - !;'» 

(21T)4 (k,k) + m 2 (21T)4 (1T,1T) + rf2 ' 
(12) 

where g(t - I') and g(so - s b) are given by Eqs. (8) and 
(9), (A,B) denotes an Euclidean product and the units have 
been chosen to be fz = m = 1To = 1. 

It is noted that in the limit So = S b = 0, integrating over 
the internal space variable ~. the correlation function just 
reduces to that of the scalar field 

1 Jd 4keifA,(X-X'» 

(1)(x,t)8(x',/ '» = --4 2 . 
(21T) (k,k) + m 

(13) 
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This is the Euclidean Markov field result which has been 
obtained from Nelson's real-time formalism of Brownian 
motion, and in this sense it gives rise to the equivalence of 
these two formalisms as advocated by Guerra and Rug­
giero.4 Again it has been shown that when an anisotropic 
feature of the internal space-time corresponding to the vari­
able S,.. is taken into account, implicitly so that the two oppo­
site helicities give rise to the fermion and the antifermion, we 
can obtain the fermionic propagator in Euclidean space­
time. 6 

Now introducing temperature dependent moments8 

(14) 

with Wn = 21Tn//3fz, which has been derived from the consi­
deration of the KMS condition, we can obtain the moments 

(q(t)q(t'» T""O 

= _1_ i exp[iwn (t - t')] 

13m n= -a w2 + w~ 
(15) 

(q(So)q(s ~» T""O 

= _1_ i exp[iw" (So - S ~)] 
/31To ,,= _ a w2 + w~ 

(16) 

These lead us to the correlation function of the stochastic 
fields for a particular mode n = 1 when we take So = S ~ = 0 
and integrate over the space variable ~, 
(q(x,t),p(x',t'» T""O 

(17) 

using the normalization condition fz = m = 1To = /3 = 1 (see 
Ref. 1). 

When an anisotropy is introduced in the internal space, 
so that the two opposite orientations give rise to the fermion 
and antifermion, we get the correlation function of the 
spinor field for n = 1 (see Ref. 1), 

and 

where VB are the coefficients of Bogoliubov transformations 
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(18) 

As it is noted here, the statistics of the particle depend 
on the internal space-time variable S. Indeed the internal 
helicity arising from the anisotropic feature of the internal 
space corresponds to the fermion number. Again, when 
there is no anisotropy in the internal space, we get a boson. 
Now temperature should definitely affect the internal mo­
tion, and as such it may happen that at high temperature the 
anisotropic feature of the internal space will be destroyed 
and the fermion may be transformed into a boson. That is, a 
massive extended body depicting a fermion can have such a 
phase transition. However, this does not mean that fermion 
number conservation will be violated, as Lorentz invariance 
does not allow such a process to occur.9 The only effect of 
such a phase transition will be that a thermal pair of opposite 
statistics will emerge as zero energy modes at the critical 
temperature leading to a nonequilibrium state. In view of 
this, at finite temperature we should write the stochastic 
non local field ,p(x,s), which is assumed to satisfy the condi­
tion of separability ,p(x,S) = ,p(x),p(S) as a thermal doublet 
(:~ti). It may be noted that though x and S represent two 
different spaces, the external motion is a manifestation of the 
internal motion, and as such a mapping of x and S is possible. 
In that case x may be represented in the functional form 
xes) and the simplest form of mapping can be taken as 
x = CS, where c is a suitable constant. In view of this map­
ping, there should be a mapping of ,p(x) and ,pes) also. We 
can assume that ,pes) = Ap(x) = if/ex), where A is a suit­
able parameter. Thus the thermal doublet (:~ti ) can be writ­
ten as (~~~;) ). So we:.. can consider that there exists a conju­
gate Hilbert space H associated with the Hilbert space H 
such that 1I is the set H with scalar multiplication A,s -As, 
where AEe and SEN, and with scalar product S,1]- (s,1]) 
with 5,r;EN, where 5,1]- (s,1]) is the scalar product. In ef­
fect H is the Hilbert space associated with the external space, 
and 1I is the conjugate Hilbert space associated with the 
internal space. 

In Ref. 1 it has been shown that this helps us to reformu­
late thermofield dynamics as proposed by Takahashi and 
Umezawa in terms of stochastic fields. For example, in case 
of bosons, we can write 

(19) 

(20) 
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with 

(
cosh O( 1.01'/1) 

VB (1.01,/1) = sinh O( 1.01'/1) 
sinh O( Ipl,P») 
cosh O( 1.01,/1) 

€(p) = ~p2 + m2. 

The "total" Lagrangian becomes 

I", = L", - I", = aflt/J+ aflt/J - m2(Vt/J 

- afl7p+ afl7p + m27p+7p 

= aflt/J+ (~ ~ J aflt/J 

- m2t/J+ (~ ~ 1) t/J. (22) 

These relations can easily be generalized to fermionic cases 
also. 1 From these relations we find that we can define a tem­
perature dependent vacuum 

10(P» = ~ 1 - e f3E exp(e - f3E!Za+ a+) 10), 

where 

aIO(/1» = e- f3E12a+IO(/1», 

aIO(/1» = e- f3E1za+10(/1». 
(23) 

The thermal average of an operator A can now be written as a 
vacuum expectation value 

(A ) = Tr e -f3H A /Tr e- f3H = (0(/1) IA 10(/1». (24) 

This is the basis of thermo field dynamics, and it is found 
here to be related with stochastic fields involving external 
and internal space. 

III. EQUILIBRIUM STATE IN QUANTUM STATISTICAL 
MECHANICS AND STOCHASTIC FIELD THEORY AT 
FINITE TEMPERATURE 

The correlation functions derived for the stochastic 
fields at finite temperature ( 17) and ( 18) have been derived 
from those of stochastic oscillators as given in Eq. (14). 
These relations have been assumed taking into consideration 
the KMS condition. So the KMS condition is built into this 
mechanism, which ensures the equilibrium state. However, 
it should be noted that Eq. (20) suggests that apart from in 
the external space, we should have the KMS condition in the 
internal space also. This is a major consequence of this for­
malism. This implies that when we write the internal field 
function as a tilde function in the external space through the 
mapping t/J(t) = }.t/J+ (x) = 7p+ (x), the KMS condition 
should have its specific form in the case of tilde fields also. 
That is, if the state w satisfies the KMS condition with re­
spect to a p then the extension (jj of (U satisfies the KMS 
condition with respect to ap which is the canonical exten­
sion of at. This makes the connection between statistical 
mechanics and the Tomita-Takesaki theory of modular Hil­
bert algebras and the Haag-Hugenholtz-Winnik formalism 
get a proper physical meaning. 
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(21) 

To depict a thermodynamic equilibrium state, a Gibbs 
state is given by 

w(A) = Tre- f3HA ITre- f3H = (A). (25) 

The KMS condition states that for any A and B belonging to 
the operator algebra U (C * algebra) describing the system 
considered, there exists a function FAB (z) of a complex num­
ber z, holomorphic in ° < Emz < p, continuous in 
O<,Emz<,p, and satisfying the relations 

FAB (t) = w(Aat (B»), 
(26) 

FAB (t + i/1) = w(at (B)A), for tER, 

where 

at (B) = eiHtBe - iHt. 

Also we have the condition that 

w(A + A) = 0, for AEU implies A = 0. (27) 

Equation (26) is a consequence of the invariance of the trace 
operation under cyclic permutations of the operator prod­
uct. Equation (27) implies that if we consider the G NS rep­
resentation 

(28) 

the cyclic vector Ow is also a separating vector. 
In Ref. 1, we have shown in detail how the tilde oper­

ation of stochastic fields corresponding to the stochastic 
fields of the internal space gives rise to the HHW modular 
conjugation algebra and the Tomita-Takesaki theory of mo­
dular Hilbert algebra. The main reasoning behind this is that 
in this thermal doublet formalism of stochastic fields with 
the tilde mapping requires that the "total" Lagrangian 
should be written as 

(29) 

as has been shown in Eq. (22). This implies that the "total" 
Hamiltonian H is given by 

H=H-H, (30) 

where the temperature dependent vacuum satisfies 

H 10(P» = (H - H) 10(/1» = 0. (31) 

Moreover, we can construct and involution operator J satis­
fying 

H = JHJ, (32) 

with J 2 = 1. This operator J relates in effect the transforma­
tion of the external and internal fields through the relations 

a = JaJ, 

a+ =Ja+ J. (33) 

Indeed as long as the problem of unboundedness of the oper­
ators does not cause serious trouble, we can have the HHW 
formalism of modular conjugation and the Tomita-Take-
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saki theory of modular Hilbert algebras. These aspects have 
been discussed in detail in Ref. 1. 

Thus we find that we can have a field theoretic origin of 
the HHW algebra and the Tomita-Takesaki formalism 
when we take into account the thermal behavior of stochas­
tic fields involving the external and internal space written as 
thermal doublets to depict the thermal aspects of the quan­
tum statistical mechanics. The KMS condition is ensured by 
the correlation functions of the stochastic fluctuations, and 
as such stochastic field theory at finite temperture, in effect, 
represents thermodynamic equilibrium states. 

IV. EQUILIBRIUM CONDITION AND NIEMI-SEMENOFF 
Z2SYMMETRY 

Niemi and Semenoff3 have formulated a finite tempera­
ture quantum field theory in Minkowski space which intro­
duces a new ghost field, and the equilibrium condition is 
found to be governed by Z2 symmetry between the physical 
field and the ghost field. This Z2 symmetry effectively corre­
sponds to time reversal symmetry. This arises from the ex­
tension of the time integration from the real axis segment 
[ - T, T] to an integration over the contour in the complex 
time plane. This contour starts at - T and runs along the 
real-time axis to + T. From + T the contour continues 
along the imaginary time direction to + T - i(J /2, from 
+ T - i(J /2 parallel to the real-time axis to - T - i(J /2, 

and finally parallel to the imaginary time axis to - T - i(J. 
The generating functional can then be used to compute 
Green's functions, with arguments on the real Taxis, and the 
contribution related to the arguments on how the imaginary 
T axis can be absorbed into the normalization. This leads to 
the result that the propagator acquires a matrix structure. 
There are two kinds of fields rPl and rP2' where rPl appears on 
external lines and represents the physical field, and rP2 ap­
pears as a new field corresponding to the time-reversal field 
of rPl and thus represents a ghost field. Evidently rPl and rP2 
are linked by the discrete Z2 symmetry. 

Now when we recast this result into our formalism of 
stochastic field theory, we note that we can associate the 
tilde field in the thermal doublet as the ghost field rP2' and as 
such it represents the stochastic field in the internal space. It 
can be shown that this field in the internal space may be 
taken effectively to represent the time-reversal partner of the 
field in the external space. Indeed, from the stochastic differ­
ential equations (2) and (5), we can write the current veloc­
ity 

V=!(b+b*), 

and the osmotic velocity 

U=!(b-b*). 

(34) 

(35) 

Similarly, from the equations corresponding to the in­
ternal space variables (3) and (6), we can write the internal 
current velocity 

vl=!(b'+b'*), 

and the internal osmotic velocity 

U'=!(b'-b'*). 

(36) 

(37) 

Now in Nelson's formalism of stochastic quantization, 
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it has been taken that when t/J is written as a R + is, the current 
velocity Vis associated with as / ax, and the osmotic velocity 
u is associated with aR lax. But when Nelson's procedure is 
generalized to have relativistic generalization and the quan­
tization of Fermi fields, 6 the internal current velocity is relat­
ed with aR / at. This can again be associated with aR / ax 
through the mapping of x and t. Now the osmotic velocity in 
this case represents the situation when the sample path ter­
minates at the point x at time t, which actually corresponds 
to the motion in the negative time axis. Since the term aR / ax 
corresponds to this velocity, and the term aR / at represents 
the internal current velocity, we can associate the field in the 
internal space with the time-reversal field. This suggests that 
the mapping rP(x) and rP(t) is isomorphic to the Z2 symme­
try corresponding to time-reversal invariance. This leads to 
the fact that rP(x) and ~+ (x) have this Z2 symmetry 
through the mapping rP(t) = ~+ (x) = ArP+ (x), AEC. This 
suggests that the tilde operation of Takahashi and Umezawa 
actually corresponds to the discrete symmetry operation Z2' 
and is thus equivalent to the Niemi-Semenoff formalism. 

Now to study the equilibrium condition, we have argued 
that in this formalism of stochastic field theory, we should 
have the KMS condition in the internal space also apart from 
that in the external space. This leads to the physical rel­
evance of the HHW modular conjugation algebra and the 
Tomita-Takesaki theory of modular Hilbert algebra. As the 
external and internal fields may be associated with Z2 sym­
metry corresponding to time-reversal in variance, we find 
that the necessity of the existence of the KMS condition in 
the internal space, in addition to that in the external space, is 
a manifestation of the fact that Z2 symmetry is the necessary 
condition for the equilibrium state as proposed by Niemi and 
Semenoff. This equilibrium is destroyed by the violation of 
the KMS condition in the internal space through the thermal 
change in the isotropic or anisotropic nature of this space, 
leading to a change in statistics of the thermal pair, and thus 
in that case we will have the spontaneous breakdown of Z2 
symmetry. 

V. DISCUSSION 

We have studied here the equilibrium condition in terms 
of the stochastic field theory at finite temperature involving 
fields in the external and internal space, and have shown that 
the HHW formalism of modular conjugation as well as the 
Tomita-Takesaki theory of modular Hilbert algebra find a 
physical relevance in terms of stochastic field in the internal 
space. Besides the ghost field of Niemi and Semenoff, the Z2 
symmetry requirement for the equilibrium condition be­
comes equivalent to this formalism when the ghost field is 
associated with the field in the internal space. When the 
equilibrium is destroyed, the isotropic or the anisotropic fea­
ture of the internal space gets changed, leading to the change 
in statistics of the thermal doublet, and as such Z2 symmetry 
is violated. This situation may arise when supersymmetry is 
restored at high temperture from a physical state of broken 
supersymmetry at low temperature. 

It may be noted that when the equilibrium condition is 
studied from the viewpoint of stochastic fields, the correla­
tion functions involved have been considered taking into ac-
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count the KMS condition, and as such the KMS condition is 
built into this formalism. Thus it may appear surprising to 
consider that the Z2 symmetry, just as the KMS condition in 
the internal space, is an essential condition for equilibrium, 
as the correlation function in the external space itself has 
also the implicit KMS condition in that space. Indeed, as the 
thermofield dynamics of Takahashi and Umezawa, as well 
as the Niemi-Semenoff theory of finite temperature quan­
tum field theory at finite temperature, necessitate an extra 
field which is identified here with the field involving internal 
space, it is evident that the KMS condition in the external 
space itself is not sufficient to study the equilibrium condi­
tion. This becomes transparent from the fact that a stochas­
tic field involving only the external space faces serious trou­
ble as the two-point correlation function at T = 0, 
<t/J(x,t)t/J(x',t'», involving only external space-time vari­
ables, is not Lorentz invariant (rotationally invariant) when 
it is derived from a finite temperature correlation function 
taking the limit {J-+a. 8 Indeed, the stochastic fluctuations 
operating at T #0 still have their residual effect at T = 0 
through the moment of the component oscillators. However, 
when the moments of the stochastic fields are determined 
incorporating two fields, one in the external variables and 
the other in the internal variables, this Lorentz invariance 
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may be restored through CPT invariance, as the Z2 symme­
try manifested in this two-field formalism implies time-re­
versal invariance, which again becomes equivalent to CP 
symmetry. Thus the consistency requirement of stochastic 
fields requires the two-field formalism, which helps us to 
associate the stochastic fields at finite temperature with the 
finite temperature quantum field theory in Minkowski 
space. This also helps us to study the equilibrium condition 
giving a physical insight into the HHW formalism ofmodu­
lar conjugation and the Tomita-Takesaki theory of modular 
Hilbert algebra. 
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In this paper, the methods of nucleons outside the closed shell (NOCS) and nucleons inside 
the closed shell (NICS) is introduced into the composite-particle systems, and Glauber's 
multiple scattering theory is used to divide the multiple scattering amplitude (between two 
composite particle systems) into NOCS-NOCS, NOCS-NICS, NICS-NOCS, and NICS­
NICS scattering amplitudes. In order to apply these concepts to our research, an effective 
approximate method is used for each scattering amplitude. For example, an independent 
particle model approximation has been used for the NOCS-NOCS scattering amplitude. As for 
the NICS-NICS and NICS-NOCS scattering amplitudes, the geometrical model and Bohr's 
collective model are adopted, respectively. It can be shown that the high-energy scattering S 
matrix elements for composite-particle systems present a clear physical picture and render 
convenience to calculation. 

I. INTRODUCTION 

In nuclear physics, the concept of the shell model has 
been widely used in the discussion of various physical prob­
lems. The existence of the closed shell makes it possible to 
divide a composite-particle system into nucleons outside the 
closed shell. (NOCS) and nucleons inside the closed shell 
(NICS). I It is convenient to discuss the single particle effect 
and the collective effect separately if the concept of the shell 
model is introduced in the scattering theory, so that the 
physical properties can be more satisfactorily approached. 
So far, the methods ofNOCS and NICS have not been adopt­
ed in Glauber's scattering theory.2 In this paper we try to 
discuss the problems of high energy scattering of composite 
particle systems within the framework of Glauber's theory. 

This paper is organized as follows. In Sec. II, the divid­
ing NOCS and NICS is described, in Sec. III, the S matrix of 
a particle and NICS cluster is described, in Sec. IV, the S 
matrix of the NOCS-NICS and collective model are dis­
cussed, in Sec. V, the S matrix of NOCS-NOCS is described, 
in Sec. VI, the S matrix of NICS-NI CS and the geometrical 
model are discussed, and in Sec. VII discussions and conclu­
sions from the work are given. 

II. THE DIVIDING INTO THE NOCS AND NICS 

According to Glauber's theory, the multiple scattering 
amplitude between the composite particle systems A and B, 
i.e., for theA + B -A * + B * scattering process, is given by3 

Ffi ( q) = 0 ( q) .!!5...-f db eiq 
• b 

21T 

X f dx dy tP!/x)tP~/y)rtPA; (X)tPB,(Y)' (2.1) 

where 0 (q) is the correction factor for the center of mass; k, 
the momentum of the incident particle system; q, the mo­
mentum transfer; b, the impact parameter; t/i': (y), t/f'J. (x) 

f f 

and tPB, (y), tPA; (x) are the final and the initial states of the 

target and incident particle system, respectively, where X 
stands for Xi'" X A , the coordinates of NOCS and 
XA + 1'" XNA , the coordinates of NICS, and the coordinate y 
may be defined in the same manner; 

B NIJ 

= II dYa II dYf3' 
a~l f3~B+l 

The total profile function r is given by 
NA NB 

r=l- II II [1-r ky (b+Sk -uy »), (2.2) 
k~ly~l 

where SK and u y are the projections of the particle coordi­
nate XK and Y r on the plane perpendicular to k, respectively, 
and r kr (b) is the two-body profile function. The relation 
between this function and the two-body scattering ampli­
tude is 

rky(b) = 21T~kl f dqe-
iq

•
b 

'!ky(q)· (2.3 ) 

In high-energy collision, if the spin effect is neglected, the 
two-body scattering amplitude is usually written as 

(2.4) 

where a is the total cross section of the two-body scattering, 
p, the ratio of the real to the imaginary part of the forward 
amplitude, p, the slope parameter, and k I, the momentum of 
a incident particle. 

In general, the NOCS is more active and easier to be 
excited, but the character of the NICS has more collectivity. 
Therefore, when two-composite-particle system collision 
A + B - A * + B * is to be considered, both A and B must be 
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divided into two parts, the NOCS and the NICS. Then the 
multiple scattering amplitudes ofthe two composite particle 
systems, Eq. (2.1), can also be divided into NOCS-NOCS, 
NOCS-NICS, NICS-NOCS, and NICS-NICS multiple 
scattering amplitudes that can be treated by different effec­
tive approximate methods, respectively. So the total profile 
function in Eq. (2.2) can be written as 

r(b,sl" 'SNA,U I •• ·UNB ) 

= 1- [1- rl(b,SI"'SA'UI"'UB)] 

· [1 - r 2 (b,SI" "SA'UB + I" ·UNB )] 

· [1 - r3 (b,SA + I" 'SNA'U1" ·uB )] 

· [ 1 - r 4 (b,SA + I •• 'SNA,UB + I .. ·UNB )]' 

where 

rl(b,SI"'SA'UI ' ··UB ) 

A B 

= 1- II II [1- ria(b+si -Ua )], 
i= I a=l 

r 2 (b,SI" 'SMUB + I" ·UNB ) 

A NB 

=1-II II [1-r iP (b+s i -up)], 
i=IP=B+I 

r 3 (b,SA + I •• 'SNA,UI' •• U B ) 

NA B 

=1- II II [1-rja (b+sj -ua )], 
j=A+la=1 

(2.5) 

The first integral in the second term on the right-hand side of 
Eq. (2.8) is the S matrix which represents the interaction 
between NOCS of A and that of B; the second integral is the S 
matrix between NOCS of A and NICS of B; the third integral 
is the S matrix between NICS of A and NOCS of B; and the 
fourth integral is the S matrix between NICS of A and that of 
B. On the basis ofEq. (2.8), in this paper we shall discuss 
these S matrices and treat them with different approximate 
methods. These methods can be used to discuss the particle 
scattering problems. 

III. THE 5 MATRIX OF A PARTICLE AND NICS CLUSTER 

According to Eq. (2.8), the scattering amplitude of a 
particle scattered by NICS cluster may be written as 

1366 J. Math. Phys., Vol. 30, No.6, June 1989 

NA NB 

= 1 - II II [1- rjp(b + Sj - Up)], (2.6) 
j=A+lP=B+1 

the profile functions of interactions between the NOCS­
NOCS, NOCS-NICS, NICS-NOCS, and NICS-NICS are 
described, respectively. Similarly, the wave functions ofthe 
systems A and B are divided into the wave function of 
NOCS, part u, and NICS, part v, respectively. They are 

¢A(X) =UA(XI"'XA)VA (XA+I"'XN )=UAVA ' 
I I I II I I 

¢B;(Y) = UB/YI" 'YB )VB/YBH" 'YNn ) =UBYB,' 

¢A.=UA (XI"'XA)VA (xA+,"'XN )=UAVA ' 
" , A j J 

(2.7) 

¢B/Y) = UB/YI"'Y B )VB/Y B+' .• 'YN) =UB,VBj ' 

The forward peak and the diffraction pattern are the features 
ofthe high-energy particle-particle collision. Since the inter­
action time between particle-particle is very short, the parti­
cles passing through the target nucleus generally do not 
come into collision with the same nucleon in target nucleus 
several times. Therefore, the contribution of the intermedi­
ate states is not important in the multiple collision process, 
and can be neglected. Substituting Eqs. (2.5) and (2.7) into 
the integrand of Eq. (2.1), one obtains 

(2.8 ) 

/cS)/i (q) 

- ik fdb iq·b -- e 
21T 

x s V I [ 1 - jDI [1 - rj (b - Sj ) ] ] Ii) s 

- ik Jdb iq·b -- e 
21T 

XsVI[I-exp( - ~~jtIJ dzv(r-x))]li)s, 
(3.1) 

where VCr - xj ) is the interaction potential between the free 
particles and thejth particle in NICS; 1 i) S' If) s are the initial 
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and final states in NICS. Suppose the Hamiltonian of the 
NICS is df'., i.e., 

(3.2) 

Here we assume that the NICS occupies a certain space !iJ 
and then divide !iJ into infinitesimal scattering objects. Here 
we regard the NICS as a scattering medium with definite 
transparency. Thus a particle scattered by the NICS can be 
regarded as scattered by infinitesimal scattering objects. 
And assume that the volume of each small unit is £3; as 
shown in Fig. 1. We introduce vCr - xj ) to describe the in­
teraction density of the V( r - Xj ), then 

(3.3 ) 

and 

lim LV(r - Xj) = lim L£3v(r - x) 
i-CO j i-co j 

= fg dx vCr - x) = VCr), (3.4) 

where VCr) is the potential with respect to NICS; thus Eq. 
(3.1) is reduced to 

r () =~fdbeiq'b 
J(s)/i q 21T 

the S matrix of the b representation is 

X v.(X "'X "')ITdx lIn " 
(3.6) 

Use Vi (X," 'Xn ••• ), Vj(X," 'Xn ••• ) to describe these col­
lective states, denoted by Ic;i), Ic;!), i.e., 

df'slc;n) =£nlc;n), (3.6') 

then 

v.(X "'X ••• ) = (x "'X "'Id) 
lIn 1 n " 

V (x "'X .•• ) = (x "'X ···Ic·f) 
f' n 'n" 

(3.7) 

x 

'O<...._--'-'_z 

y 

FIG. 1. Dividing NICS into infinitesimal objects and the volume of each 
small unit is c'. 
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Because of the orthogonal completeness of the basis vector 

Jlx "'X "')(x "'X "'IITdx=1 I" I n I' ,. 
(3.8) 

( X .. ·x' .. 'Ix '''X ... ) = o(x - x' ) .. 'o(x - x' ) ... I n I nil n n , 

thus 

X (XI" 'Xn " 'Ic;i) IT dX i ,. 

The multiple scattering amplitude of a particle scattered by 
the NICS cluster is given by 

ik ( I .t;.l/i(q) = 21T c;! 

x J db e
iQ

'
b

[ 1 - exp( ;v
i J dz V(r»)] IC;i) 

= (C;!llrsl (q) IC;i), (3.10) 

where 

IrS) (q) = ~~ J db e
iq

•
b

[ 1 - exp( ;v
i J dz V(r»)] 

(3.11 ) 

is called the scattering operator. When theirs) (q) operates 
on the collective state Ic;i) , it transits to the collective excited 
state Ic;!). 

( 1) As a result of collective motion, !iJ will vibrate, or 
rotate. If the target nucleus is spherically symmetric, but is 
susceptible to vibration around that spherical shape, R may 
be expressed as 

(3.12) 

where Ro = Yo A '1/3, A' is the mass number of the target. 
Assume that the NICS interaction to which an incident par­
ticle is subjected is described by an optical model potential 
VCr). Then we insert (3.12) into (3.11) and expand the 
latter in powers of 

Ia"I,Y"" 
A" 

to get4 

(3.13 ) 

Now we consider a nucleus with a set of quadrupole vibra­
tion. 

Following Buck,S the relation between al' and phonon 
operator can be written as 

(3.14) 
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assuming that the nuclear excitation energy may be neglect­
ed compared with the projectile energy, in which case the 
scattering operator (3.11) may be rewritten as 

A ik J . { [ hV) (q) = 21T db e"l·b 1 - exp - Xo(b) 

where 

Xo(b) =i.foo dz Vo(r), 
liv - 00 

irz fOO d 
Xzp(b) =-- dz- Vo(r)' Yzp«(},cp)· 

1iv.j5 - 00 dr 

(3.15 ) 

(3.16a) 

(3.16b) 

To evaluate the integral for Xzp one must take account of the 
Z dependence of Yzp . If (d / dr) Vo depends only on 
r = (b 2 + r) 1/2, the Y2 ± I terms will integrate to zero since 
they are odd in z. Further, assuming that the leading contri­
bution will come from near z"'" 0,6 we thus obtain 

ir2 1 ( 5 )1!2fOO d _ Xzs(b) =-- - dz- Vo(r)= -X1(b), 
Iiv.j5 2 41T - 00 d r 

(3.17a) 

X2+2 (b) = _2 __ - e± 12", dz- Vo(r) ir 1 (15)1/2 . foo d 
- Iiv.j5 2 81T - 00 dr 

(3.17b) 

Define 

g = - ao + ~ (a2e - 0.'1' + a_2eo.'1'). (3.18 ) 

We can write for the scattering operator 

f;V)(q) =~Jdbeiq·be-Xn(b). e-X,(b)(g+g+). (3.19) 
Z1T 

Here we have dropped the 1 that contributes only to forward 
elastic scattering and assumed x I = xf. 

To find this it is convenient to use the Baker-Camplell­
Hausdorff formula 7 

e-X,(b)(g+g+) =e-X,(b)g+ . e-X,(b)g. /xt(b) (3.20) 

since [g+,g] = - 4, then 

(3.21) 

(2) On the other hand, if the' target is an (axially sym­
metric) deformed nucleus4 

(3.22) 

where the angle () 1 refers to the body fixed system. /3 is the 
conventional nuclear deformation parameter. /3> 0 and 
/3 < ° refer, respectively, to prolate and oblate deformation. 
We assume that VCr) is the optical-model potential. If the 
potential is again expanded in powers of~A/3 A YAO «() '), one 
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gets exactly the same expression as in (I), namely, Eqs. 
(3.13), except that a Ap and YAP «(},cp) are replaced, respec­
tively, by f3 A and 

YAO «() ') = I D ~o «(}j ) YAp «(}cp). 
P 

Here D ~o «(}j ) is a rotation matrix and (}j stands for the Euler 
angles between the body-fixed and the space-fixed coordi­
nates. Then8 

V(r)"",Vo(r) - If3A VAP' 
Ap 

where 

YAp = ~ Vo(r)D~o «(}j) YAp «(},cp). 
dr 

(3.23) 

(3.23') 

In the rotational case, the scattering operator (3.11) may be 
rewritten as 

f;R) (q) = ~! J db e
jQ

'
b

{ 1 - exp [ - Ao(b) 

- 'ff3A{UAP(b,CP,(}j)]}, (3.24) 

where 

Ao(b) =i.foo dz Vo(r), 
liv - 00 

(3.25a) 

for an axially symmetric nucleus with quadrupole deforma­
tion A = 2, and we now make a further hypothesis, Z = 0, so 
that Y2p has a very simple representation; then we have 

i J d 1 ( 5 )112 (U20(b) =- dz-Vo(r)' - - =AI(b), 
liv dr 4 41T 

(U2±2 (b) - - dz- Vo(r) - - . e+ j2
4> - i J d 3 (5 )112 , 

liv dr 81T 41T 

= _3_ A
I
(b)e+ i24>' 

21T ' 
(3.25b) 

where (}j may be specified in terms of polar angles «(},<I». 
Here <1>' = <I> - cp, then Eq. (3.24) can be reduced to 

f;R)(q) =ik f bdbJo(qb)e-An(b). ef3,A,(b)t(q,'), 

where (<1>') = 1 + (3/1T)COS 2<1>'. 

IV. THE 5 MATRIX OF THE NOCS-NICS AND 
COLLECTIVE MODEL 

(3.26 ) 

The NOCS are part of the particles bound in the com­
posite particle system. Now we discuss the scattering matrix 
of the NOCS in B and the NICS in A. In Ref. 9, the symbol 
Uj (YI" 'YB) is used to represent the wave function of the 
NOCS in B and the scattering matrix of the elastic channel of 
NOCS-NICS is only discussed. In this paper, we will further 
discuss the scattering matrix containing the inelastic chan-
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nel and NICS can be transmitted to the excited collective 
state. TheSmatrixofthe NOCS and NICS maybe written as 

Sv_s(b) = f V;(XI"'Xn"')U~(YI"'YB) 

xexp( - i f. f f VCr - Xj + Ya )dZ) 
liv j=la=1 

. vj(xl"'xn"')Uj(YI"'YB) 

'" B 
X II dX j II dYa' (4.1 ) 

j= I a=1 

At high energy, it is convenient to use the probability density 
to describe the state of NOCS, i.e., 10 

B 

U~Uj = IIP(Ya)' (4.2) 
a=l 

when the number of NICS is infinite; we shall consider that 
there exists to excite the collective state Ie;!) of NICS. 
Hence Eq. (4.1) may be rewritten as 

Sv_s(b) 

= \e;!1 [f ]/(Yd)dYa 

xexp( -i f ~ dxdZV(Y-X+Ya»)]le;i). 
t,v a = I j,/ 

(4.3) 

In Eq. (3.11), the amplitude operator.l;S) (q) with respectto 
the profile function is 

r(S) (b) = 1 - exp( ~vi ffiiJ dx dz vCr - X») 

= -- dq' e- q
' 'J; (q/). 1 f ' b A 

21Tik 1 (s) 

Substituting Eq. (4.4) into (4.3) yields 

Sv_, (b) = (e;!1 [1 - 21T~k 1 f dq' dy p(y) 

X -jq'·(sy+b).i- ( I)]B II .. ) e J (s) q e,l . 

Let the form factor SB (q) of NOCS be 

SB(q) = fdYP(y)·e-jQ"Y. 

(4.4) 

(4.5) 

(4.6) 

• ( _ <i/4k 2) (<i/4k 2) 
For the a partIcle SB (q) = Al e I - A2 e 2, 

Al =ki!(q -e'k~),A2=e'kU(k3e'ki), wheree, kl 
and k2 are parameters, II so that 

S,,_s(b) = (e;!1 [1 - 21T~k 1 f dq' Sa (q/) 

.... , - iq'·b • 
]

B 

X/r.'J (q )e Ie; I), (4.7) 

where B is the number of NOCS;.I;s) (q) is the amplitude 
operator of the interaction between a free particle and NICS 
cluster. When.l;s) (q) operates on the collective state Ie; i), it 
transits to le;/). If.l;s)(q) and the form factorsa(q) are 
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given, we can obtain the S matrix of the NOCS-NICS, which 
contains the inelastic channel. 

For the vibrational nucleus, if the target nucleus is 
spherically symmetric,.I; v) (q) is given by Eq. (3.21). Sub­
stituting Eq. (3.21) into Eq. (4.7), and then integrating for 
dq/, note that glO) = O. And for the a particle, 

[
1 - _1_ f dq' S (q/)e- jq"b}; (q/)]4 

21Tik 1 a (v) 

=± C{ [1 - fbI db 1 e - X,,(b') 'e2Xi(b') 
J= I 

Xe - X,(b')g+II(bb ') F, 
where 

(4.8) 

II(bb') =2A.kie- k ;(b-b'J' _2A2k~'e-kl(b-b'J', 

so the S matrix from the ground state (no phonon) to the 
excited state (N phonon) is 

Sa_,(b) = (N I ± C~ 
J= 1 

where 

Ao(b) = fb' db'·e-X,,(b'J./x;(b')II(bb'), 

A.(b) = fb' db' e-X,,(b'J./X;(b')( -X.(b'»)II(bb')g+. 

For a rotational nucleus,.I;R) (q) is given by Eq. (3.27). 
Substituting Eq. (3.27) into Eq. (4.7), and then integrating 
for dq', we get 

[ l-_I_f dq'S (q')e-jq'bi- (Q,)]4 
21Tik' a J (R) 

= jt. C{[ - I b' db'e- A,,(b'J£!3"A,(b'l/('l>'JII(bb') r 
( 4.10) 

The t( ct>') will depend only on ct> - cp, the difference 
between the nuclear azimuthal coordinate and the projectile, 
by virtue of our choice of Z axis. We can also write YLM (OJ) 
= P LM (e) eiM'l> . If we change variables to ct>' = ct> - cp and 
0; = (0, ct>'), we have 

Sa_,(b) = I dOi Y!M(();)YOO(O;)jtl C~[ - I b'db' 

- e - A,,(b'l .£!3,A,(b'J/($'lII(bb ') r (4.11) 

In the same way, we can obtain the S matrix element of 
NICS-NOCS. 

V. THE S MATRIX OF NOeS-NOeS 

In Eq. (2.8) the S matrix of NOCS-NOCS can be writ­
ten as 

Sv - v (b) = IIUI i~1 dx; dYa U~fU~j 
X [1- rl(b,SI"'SA' (J"1"'(J"B)]UA,U Bi 
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X[1-ria(b+Si-O'a)]U4;UB;' (5.1) 

In Ref. 9, NOeS-NOeS scattering with the PRA method is 
treated, but they did not consider the excitations in systems 
A * and B * after collision. The NOeS are small in number 
and easier to be excited, so we may extend the RP A method 
to the particle excitation. The method of the double scatter­
ing amplitude approximation is used to calculate this S ma­
trix. The motion of the NOeS can be described by the use of 
an independent particle model which does not lose genera­
lity. For simplicity, the statistical characteristics of NOeS 
are not to be considered. Then the wave functions of ingoing 
and outgoing systems can be written as follows: 

U =u (x"'x ) = u(1)(x ) .. 'U(A)(X ) 
Ai Ai 1 A A, I Ai A' 

U =u (y"'y ) = u(1)(y ) .. 'U(B)(y ), 
B, B; I B B, I B, B 

u =u (x"'X ) = u(l)(x ) .. 'U(A)(X ) Af Af I A Af I Af A' 

U =u (y ... y ) = u(l)(y ) .. 'U(B)(y ) Bf Bf I B Bf I Bf B' (5.2) 

whereu~i)(x),u~a)(y) (i= 1, ... ,A; a= 1, ... ,B) are the sin­
gle particle wave functions in NOeS satisfying the condi­
tions of orthogonality and normalization 

Jd (i)*() (i) ( ) ,;, xUA X UA' X =UAA" 

L u~i)(x)U~i)(X/) = o(x - x'), 
A 

(5.3 ) 

J d (a)* ( ) (a) ( ) - ,;, YUB Y UB' Y -UBB" 

L u~a)(y)u~a)(y/) = o(y - y/). 
B 

By using Eqs. (5.2) and (5.3), inserting the intermediate 
states into Eq. (5.1), only the ground state is considered and 
the contribution of excitation states is neglected, then 

J i.vl dXilJI dYa u~;u~Jl- rAB(b + SA - O'B)]UA,UB; 

= J dxdyu~~)*(x)u~~)*(y)[l- rll(b+s-O')]u~:)(x)u~:)(y) 

X II J dxdyu~~)*(x)ui:,)*(y)[1-ria(b+S-O')]u~)(x)u~~)(y) 
(i,a#I,1 

=JdXdYP~I)(X)P~\)(Y)[l-rll(b+S-O')] II JdXdYP~i)(x)p~a)(Y)[l-ria(b+S-O')]. (5.4) 
f, f, (i. a # 1.1) 

Introduce the probability density, 

P(i)(x) = U(i)(X)U(i)*(X) 
Ali A, AJ 

(5.5 ) 

If f = i, the index J: can be neglected. Here the 
S ~i) (q ) ,S C;X) (q ) are called the form factors of indi vid ual 

fi '1',. 

NOeS. Using Eqs. (2.3) and (5.5) one can obtain the profile 
function of individual NOeS with double scattering ampli­
tude 
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!1a (b) = dx dy p~~(x)p~)(y)ria (b + S - 0') 

=_l-Jdqe-iq'bS(i)( _q)s(a)(q)( (q) 
2rrik I Af; Bf; ~ ia , 

ria (b) = dx dy p~i)(x)p~a)(y)ria (b + S - 0') 

=_l-Jdqe-iq'bS(i)( _q)s(a)(q)J'. (q). 
2rrik I A B ~ia 

(5.6) 

Substituting Eq. (5.6) into Eq. (5.4) we can obtain the S 
matrix of NOeS-NOeS as follows: 

Sv_v(b)=[O~~;)O~~,)-ri"I(b)]. II [1-ria(b)] 
(l,a) #(1.1) 

X II [1 - ria' (b)]. (5.7) 
U,a') # (i,a) 

Zhang Yu-shun 1370 



                                                                                                                                    

As8~i) = 0, there is a NOCS excitation inA *; andat8~a) = 0 
~ ~ 

there is a NOCS excitation in B *. With the extended approx-
imation method ofRPA, the excitation in systems equals the 
sum of single particle excitation amplitUde in NOCS. For 
Eq. (5.7), it can be shown that if we know all kinds ofform 
factors of NOCS, the S matrix of NOCS-NOCS can be ob­
tained. 

VI. THE 5 MATRIX OF NICS-NICS AND GEOMETRICAL 
MODEL 

In Sec. II we have pointed out that the NICS consists of 
infinite particles. Therefore the NICS scattered by NICS can 
be regarded as the multiple scattering between two infinitesi­
mal scattering objects, as shown in Fig. 2. In Ref. 10, we have 
pointed out that in the NICS-NICS interaction the excita­
tion of NI CS is neglected. Then, the elastic channel S matrix 
is given by 

S, _ s (b) = f u~, u~; [ I} IJ [1 - rjk (b - Sj + Sk )] ] 

(6.1 ) 

Let t:3 be the volume of each infinitesimal object. Here, use 
t:35A (xj ) to describe the matter of each infinitesimal object, 
sUbscript A indicating that it belongs to the composite parti­
cle system A. Similarly, t:3 5 B (y k ) belongs to the composite 
particle system B. SA and 5B are the density functions in A 
and B, respectively; Let Vs (r - Xj + Y k ) be the interaction 
potential between the infinitesimal object t:35A (x}) in X; and 
the infinitesimal object t:3 5 B (y k) in Y k' Then the relation 
between V and SA (X), 5 B (y d has the following expres­
sion: 

V, (r - Xj + Yk) = t:35A (x)t:35B (Yk )g(r - xJ + Yk)' 
(6.2) 

Here g(r - Xj + Y k ) is called the interaction function, so 

+ 
z 

FIG. 2. Dividing two NICS into infinitesimal objects and the volume of 
each small unit is ,,'. 
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lim IfdZ Vs(r-x} +yd 
J.k- 00 j.k 

= ,lim IfdZt:35A(X)t:35B(Yk)g(r-Xj +Yk) 
J.k- 00 j.k 

= L
A

"odXdY dZ 5A (X)5B(y)g(r-x+y). (6.3) 

The integral regions of dx and dy are § A and § B' respec­
tively, IcA,i) and !cB,i) are used to describe the collective 
motion state of A and B, respectively. So the S matrix is 

Ss_s(b) = <cA,il<cB,ilexp[ -ifdz i dxl dy 
flu J!?iJ A J!?iJ B 

X5(x) 5(y)g(r - x + y) ]ICA,i)!cB,i). (6.4) 

Let 

:u L
A

" 8 dz dx dy SA (X)5B (y)g(r - x + Y) 

=!l(b,aAA,uA ,aAOf'o)' (6.5) 

which should be the function of the impact parameter band 
aAAf'A,aABf'B' From Eqs. (6.4) and (6.5) it can be seen that 
the S matrix of Eq. (6.4) is quite similar to that obtained 
from the geometry model in badron scattering. In Refs. 11 
and 12, !loeb) is the scalar, while!l (b,a"Af'Aa"Bf'B) in Eq. 
(6.5) is the operator. Because the S matrix in Eq. (6.4) is 
only for the elastic channel, the contributions to Eq. (6.4) 
are made only by the scalar term !lo (b) and the square term 
of the a"Af'A,aABf'B in the expansion (6.5), and the higher­
order terms can be neglected. Assume that § A and § Bare 
the spherical spaces of A and B, i.e., 

!loeb) =..!..... I dz dx dy SA (X)5B (y)g(r - x + y), 
flu J!?iJ A!?iJ B 

Ss_s(b) =e-O,,(b). 

Ifwe letg(r - x + y) be 8(r - x + y), then 

!loeb) =..!..... f dz dx SA (X)5B (x - r). 
flu 

Letting 

( . )112 f ~u dxz SA (x) = TA (sx), 

have 

(6.6) 

(6.7) 

(6.6') 

( 6.8) 

(6.9) 

where Sx is the projection of the target nucleon coordinate x 
on the plane perpendicular to z; TA is the thickness function 
of NICS; Eq. (6.9) is the convolution of the two thickness 
functions of NICS B and NICS A. 

Here we assume that the interaction is the 8 function 
and use the convolution to describe the S matrix. !lo (b) is a 
more complicated scalar which cannot excite the A state to 
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the B state, but Eq. (6.5) contains the phonon operator, i.e., 
O(b,a"AI'A,a"BI'B) is an operator, and it will operate on the 
phonon valcuum states. This can excite the A state to the B 
state. 

The treatment for rotational nucleus is similar. 

VII. DISCUSSIONS AND CONCLUSIONS 

In the above sections, the S matrix of the two composite 
particle in high-energy scattering is discussed. According to 
Glauber's theory, the S matrix of the two composite particle 
system is divided into the S matrix of NOCS-NOCS, 
NOCS-NICS, NICS-NOCS, and NICS-NICS, and used 
various physically reasonable and effective approximations 
. to treat different types of the S matrix. Here the RP A meth­
od is generalized, using the double scattering amplitude ap­
proximation to treat the S matrix of NOCS-NOCS. There­
fore, the NOCS-NOCS amplitude can be calculated as long 
as various form factors of the NOCS are given. By the use of 
the sum limit method, th~ whole potential of NICS can be 
obtained, and Bohr's) collective coordinate approximation 
can be used to treat the S matrix of NOCS-NICS (NICS­
NOCS). The "fold model" to describe the NICS-NICS scat· 
tering amplitude is introduced. This is corresponding to the 
forward scattering approximation or the case of 8 force. By 
using the thickness function, the total phase shift can be cal­
culated by folding the integral. The theoretical result agrees 
with the geometrical model, so that the collective character 
of NICS contains the geometrical character. 

In the case of inelastic scattering, here we transfer the 
separate NICS into the continuous ocean, and the NICS ex­
citation may be the phonon excitation. If the Bohr collective 
model is used to connect the NICS, then the S matrix of two 
composite particle systems scattering in high energy can be 
written as 

Sfi(b) = L Sv_v(b)Sv_s(b)Ss_v(b)Ss_s(b). (7.1) 
excite 
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The differential cross section can be written as 

(7.2) 

The physically reasonable model should be chosen accord­
ing to the character of collision systems, so that the differen­
tial cross section for every kind of mode can be calculated. 
Therefore, the influence of the single particle effect and col­
lective in high energy scattering can be estimated. 

It must be pointed out that in Eq. (7.1) if the scattering 
system does not have degree of freedom of NICS, then 
Sv_ s = Ss_ v = Ss_ s = 1, the Sv_ v is only left. If the scat­
tering systems do not have degree of freedom of NOCS, the 
Sv_ v = Sv _ s = Ss_ v = 1, the Ss_ s is only left. Therefore, 
different physical considerations are needed in studying dif­
ferent scattering systems. 
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On the Hamiltonian dynamics of vortex lattices 
Kevin A. O'Neil 
Department of Mathematical and Computer Sciences, The University of Tulsa, Tulsa, Oklahoma 74104 

(Received 17 November 1988; accepted for publication 8 February 1989) 

The equations of motion for infinite doubly periodic configurations of point vortices are 
derived. A Hamiltonian for the motion, generalizing that of Kirchhoff for finite configurations, 
is found and used to deduce an expression for the energy of an arbitrary vortex lattice. The 
energy of a lattice with periodic defects is computed. Some special stationary lattice 
configurations are shown to exist and integral curves for some two- and three-vortex lattice 
motions are exhibited. 

I. INTRODUCTION 

Two-dimensional point vortices can be used to model a 
variety of systems with pairwise logarithmic potentials, such 
as line charges and crystal screw dislocations, as well as to 
model 2-D fluid flow. Periodic configurations of vortices­
vortex streets and lattices-find application in models with 
periodic or Dirichlet boundary conditions, as well as in mod­
els of rotating superfluids, type II superconductors, and 2-D 
wakes. Of particular interest are those lattices that minimize 
the lattice energy. 

In the past, various methods have been devised to com­
pute this energy or the 2-D Ewald potential more efficiently 
than by a slowly converging lattice sum. Some of these meth­
ods depend upon special lattice symmetries. \-3 By direct in­
tegration of the energy density, Tkachenk04 found the ener­
gy of a simple vortex lattice of arbitrary shape and showed 
that this energy is minimized for the triangular lattice. Re­
cently, Campbell and others5 derived an expression for the 
energy of arbitrary lattices containing more than one vortex 
per unit cell by generalizing a lattice summation technique of 
Glasser.6 The energy is given in terms of rapidly converging 
infinite products. 

In this paper the equations of motion for an arbitrary 
vortex lattice (including the limiting case of a vortex street) 
are derived and a new formula for the lattice energy is pre­
sented. The evolution equations, expressed in terms of Ja­
cobi theta functions, are obtained by summing the individual 
vortex contributions over the lattice. Since the lattice sum 
does not converge absolutely, the order of summation must 
be specified. The nth partial sum includes the effects of all 
vortices within distance n of the origin. This convention pro­
duces the same result as imposing the requirement that a 
simple lattice rotate uniformly. 

The result is a finite-dimensional dynamical system 
which has a Hamiltonian structure and is analogous to that 
of a finite-vortex configuration. This structure allows a com­
pact expression for the energy of an arbitrary vortex lattice 
to be derived in a particularly simple way. The energy de­
pends on the lattice shape and density, as well as on the 
vortex circulations and positions within the lattice. 

In Sec. II the lattice dynamical equations are derived 
using the Weierstrass elliptic functions. Section III presents 
the Hamiltonian for these equations and the lattice energy 
for an arbitrary vortex lattice is computed. This formula 
gives the energy in terms of theta functions, which is conven-

ient for both numerical and theoretical manipulations. As an 
example, the change in the lattice energy caused by the intro­
duction of periodic defects is computed. Stationary vortex 
lattices are considered in Sec. IV and examples of lattice 
motions with only two or three vortices per unit cell appear 
in Sec. V. 

II. LATTICE DYNAMICS 

A lattice L of points in the complex plane generated by 
two independent vectors WI' W2 is the set {awl 
+ bw2 Ia,bEZ}. This set is doubly periodic; a singly periodic 

lattice is obtained by letting one generator go to infinity. The 
period parallelogram or unit cell of L centered at Zo is the set 
{zo + sw \ + tw2 ls,tE [ - !,p}. The lattice can be character­
ized (up to rotation) by the lattice parameter 7 = w2/ W I and 
the lattice density p, the reciprocal of the area of a unit cell of 
the lattice IIm(wlw2 ) 1 = Iw 112 1Im( 7) I. A lattice of vortices 
of circulation r at Zo means a vortex of circulation r at each 
point Zo + w for all wEL. Conversely, given such a collection 
of vortices, the position Zo is the well-defined modulo L. We 
think of the vortex lattice as the basic unit with which arbi­
trary doubly periodic configurations can be constructed. 

Suppose vortex lattices of circulations rj are placed at 
Zj,j = 1, ... ,n. For convenience, assume all positions Zj lie in 
the unit cell centered at the origin. The conjugate velocity of 
the fluid due to this vortex lattice configuration is the sum of 
the velocities induced by all vortices7

: 

V(z) =_1 r i rj 
21Ti WELj~ I Z - (Zj + w) 

(2.1 ) 

The velocity field (2.1) determines the velocity of the indi­
vidual vortices since vorticity is a convected quantity. How­
ever, the sum over L is not absolutely convergent, that is, the 
sum depends on the order of summation. Therefore, some 
convention on the summation is needed. 

As a physical model, we take the infinite-vortex lattice 
to be the limit of finite-vortex configurations consisting of 
those vortices within the distance R of the origin as R goes to 
infinity, 8,

9 that is, the infinite lattice is the limit of finite­
circular lattices. We will see that the shape of this limiting 
region has an effect on the resulting dynamics. Let the sym­
boll: R denote this limiting process: 

rf(w) = lim r f(w), 
R R-oo WEL.lwl<R 
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In this circular limit, the conjugate velocity is 

- 1 1 
V(z) =-I r·I----

2rri 1 R (Z - Zj) - OJ 

1 
=-. I rj F(z-zj)' 

2m 
(2.2) 

where F(z) = LR (z - OJ) -I. We can express F in terms of 
the Weierstrass zeta function 

1 (liZ ) ;(Z;OJ I,OJ2 ) = - + I -- + - + -2 
Z O#wEL Z - OJ OJ OJ 

(2.3 ) 

as follows: 

F(z) = ;(Z;OJ I,OJ2) + az, a = - I' OJ- Z
• (2.4) 

R 

(The prime indicates that the singular term is omitted; it is 
easy to show that the limit a always exists.) The function 
;o(z) ofTkachenk04 is the same as F(z), as we shall see; we 
adopt this notation. The zeta function ;(z) = ;(z;OJI,OJZ ) is 
an odd analytic function with simple poles of residue 1 at 
each lattice point. Furthermore, the zeta function is quasi­
periodic: For all ZEC - L and all integers a, b, we have 
;(z + aOJ I + bOJ2 ) - ;(z) = arh + b1]2 for certain con­
stants 1]1' 1]2 called quasiperiods. Given a lattice point 
OJ = aOJ I + bOJ2 , it is convenient to write 1] (OJ ) for a1]1 + b1]2' 
Clearly, ;0 is also quasiperiodic, with the quasi periods 
ilj = 1]j + aOJ j • In fact, the quasiperiods of ;0 can be com­
puted directly from the lattice sum. 

Lemma: il(OJ) = rrpw. 
Proof By the Legendre relation 1] IOJ2 - 1]2OJI = 2rri, it 

suffices to show ill = rrpwi' Since the relation is homoge­
neous in OJ, we may rescale the lattice L and put OJ I = 1. For 
any zEtL, 

= lim ( I 1 - I _1_) 
R-oo Iwl<R z+ I-OJ Iwl<RZ-OJ 

= lim ( I _1 __ I _1_), (2.5) 
R_ 00 wELnD, Z - OJ WEL('oD, Z - OJ 

whereDI,D2 are the disks Iw + 11 <R, Iwl <R, respectively. 
Notice that on every horizontal row oflattice points through 
the disks, each disk contains exactly one lattice point not 
included in the other. Label these points OJII, ... ,OJ lr (in D I ), 

OJ21 •... 'OJZr (in Dz). Of course, these OJij' as well as r, depend 
on R; the lattice points lie near the circle Izi = R and a 
R-+ 00, r/R-+2p. 

Those lattice points belonging to Din D z generate terms 
that cancel in the sum, so that we may write 

_ . r(R) (1 1) 
1]1 = lIm I - . 

R_ 00 j ~ I Z - OJIi Z - OJ2j 
(2.6) 

Since Z is fixed, 

_ . r(R) ( 1 I ) 
1]1= lIm I ---

R-co i= I (i)2i lU Ii 

_ l' I"" (W2j - Wli) -p 1m -L . 
R-oo pR R 

(2.7) 

The limit (2.7) is evaluated as the line integral f x dyaround 
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the unit circle, yielding the area rr, This completes the proof. 
Now we can compute the conjugate velocity Vj,<v of the 

vortex at Zj + OJ by removing t~ flow due to that vortex 
from the conjugate velocity field Vand evaluating at Zj + OJ. 

- [- 1 rj ] V;w = lim V(z) - - ---'-----
, Z-Zj + W 2rri Z - (Zj + OJ) 

1 
= -. I r k;O(Zj + OJ - Zk) 

2m j#k 

+_1 lim ;o(z-z.) ------r. [ 1] 
2rri z -zj +w 1 z-(Zj+OJ) 

= _1_. I r d;o(Zj - Zk) + rrpw) + _1_. rjrrpw 
2m j#k 2m 

=_1_. I rk;o(Zj -Zk) +_1_. (I rr)rrpw. (2.8) 
2m j#k 2m 

The second term in (2,8) indicates an overall rotation, with 
the rate proportional to the sum of the circulations 
L = Lr r' Therefore, it is convenient to describe the system 
in a rotating coordinate system. Choose the frame rotating 
with ratepL/2 about the center of vorticity (Lr rZr )/L; ifL 
vanishes, then choose the nonrotating frame translating with 
the limiting velocity - i(p/2)Lr r Zr • The conjugate veloc­
ity of the vortex at Zj + OJ becomes 

notice that the velocity vanishes for the simple lattice 
(n = 1). Since OJ does not appear, the vortex velocities have 
period L in this rotating frame and the lattice structure is 
preserved. Moreover, (2.9) is well defined for vortex lattice 
positions modulo L. The foregoing discussion can be sum­
marized as the following theorem. 

Theorem 1: The motion of n point vortex lattices, taken 
as the limit oflattices in a disk and viewed from the appropri­
ate rotating or translating coordinate system, defines a local 
dynamical system of n distinct particles on the torus T = C/ 
L, with the evolution equations 

(2.10) 

While Eqs. (2.10) are defined for vortex lattice posi­
tions Zl"oo'Zn modulo L, the reference frame is not because 
(2.2) was based on Zj in the unit cell centered at the origin. 
The moment of vorticity M = LrjZj is not well defined on T. 
However, since M is a constant of the motion there are only 
(n - 1) independent positions and velocities. Therefore, the 
configuration space of the vortex lattice system is Til'" 1 

- .:l, where the diagonal .:l is the set on which two or more 
vortex lattice positions coincide. Since the equations are first 
order, phase space is identical to configuration space. 

The conjugate velocity field in the rotating frame 

V(r) (z) = _1_. I rj(;o(z - Zj) - rrp(z - Zj») (2.11) 
2m 

has period L and is thus elliptic in Z if the total circulation L 
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is zero. It should also be noted that the conjugate velocities 
are meromorphic functions of the positions when ~ = O. 

Remarks: Tkachenko4 chose the function ;o(z) as the 
unique modification of the zeta function having the quasi­
periods as shown in the lemma, which is equivalent to the 
rotation of a simple lattice. Goncharov lO gives Eq. (2.4), 
implicitly summing over circular regions to find a, and attri­
butes the same quasi periods to the result. It is evident from 
the proof of the lemma that the quasiperiods of an infinite 
lattice obtained as the limit of finite lattices depend on the 
shape of the limiting region used. This shows the long-range 
nature of the intervortex interaction. For example, if a rec­
tangular rather than circular region is used to take the limit, 
the quasi periods vary with the shape of the rectangle; a 
square region gives the same result as a circular one. If the 
quasi periods differ from the value given in the lemma, then 7 
is in general not constant and the lattice itself changes shape. 

However, different summation conventions result in 
sums that differ by at most a linear function since the second 
derivative of (2.1) is absolutely convergent. 

III. THE HAMILTONIAN AND THE TOTAL ENERGY 

A Hamiltonian for the evolution equations in Sec. II is a 
real-valued function H which satisfies the equations (writ­
ten in complex form) 

irjzj = (~+ i~)H = :2al!, j= 1, ... ,n. (3.1) ax ay aZj 

We can find a Hamiltonian for the vortex lattice system in 
terms of the Weierstrass sigma function IT(z), which has a 
simple zero at each lattice point and satisfies the relation IT'l 
IT =;. Writing lTo(z) = IT(z)exp(a~12), it is easy to check 
that 

H = - _1_ L rjrk [InllTo(zjk W-1TpIZjk 12] (3.2) 
41T j<k 

satisfies (3.1). This is a generalization of the Hamiltonian 
for finite-vortex configurations, - (41T) -I~rjr k Inlzjk 12. 

For numerical work it is convenient to rewrite (3.2) in 
terms of the Jacobi theta function 

111 (z) = 2ql/4 [sin 1TZ - q21 sin 31TZ + q3'2 sin 51TZ - ... ], 

q = exp(i1T7), 7 = w2lw l . (3.3 ) 

For every lattice we may choose generators such that the 
lattice parameter 7 has the imaginary part y>~, from which 
the series (3.3) converges rapidly for Z in the period pa­
rallelogram centered at the origin. 

By using the relation 

IT(z) = WI [ 111 (zlw l )/11; (0)] 'exp( 7J1~ /2w l ) (3.4) 

one finds 

H = - _1_ L rjr k [In I WI 111 (Z;klwl) I 
21T j<k 11 1(0) 

(3.5 ) 

Since the equations of motion depend only on the lattice 
positions modulo L, the Hamiltonian should also have this 
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property. This is easily verified with the help of the transfor­
mation relations 111(z+I)= -11I(z), 111(z+7) 
= - 111 (z)exp( - i1T( 7 + 2z) I. 

To find the vortex velocities (2.10) in terms of 111, apply 
(3.1): 

Jj = ~ ~ r k [(~; )(Zjk ) ~ (21Ti)Im(Zjk )]. 
21TW I J¥k 111 WI Y WI 

(3.6) 

It is easy to calculate the quotient of the theta functions using 
(3.3). Notice that as 7--.ioo, (3.6) has as its limit the usual 
equations of motion for vortex streets.9 

Given a configuration of vortex lattices, it is useful to 
know the kinetic energy of the fluid contained in a single 
period parallelogram. Since the energy in any neighborhood 
of a point vortex is infinite, we will fix a cutoff radius E and 
express the total kinetic energy of the lattice in the rotating 
frame as the integral of the energy density I V(r) (z) 12/2 over 
a unit cell, excluding the disk of radius E around each vortex. 
We proceed to find an asymptotic formula for this energy 
which is valid in the limit as the cutoff radius E goes to zero. 
In the calculations that follow, the numbers 0, E will be as­
sumed small and terms of such order will be ignored. 

First consider the case when the total circulation ~ van­
ishes (n > 1). The conjugate flow has the complex potential 

lI>(z) = ~ L rj (log lTo(z - Zj) + 1TpzA. (3.7) 
2m 

Let the region A be a period parallelogram, with the E disks 
about the vortex positions deleted. The integral of the energy 
density over A is equal to - (P faA 1m II>d (Re 11». Since 
the conjugate flow is elliptic, the potential is quasiperiodic; 
from the identity lTo(z + w)llTo(z) = ± exp(1Tpw(Z + wi 
2) I it follows that 

lI>(z + w) = <I>(z) + P Im(wM). (3.8) 

Hence the integrand 1m II>d (Re 11» is periodic and the inte­
gral around any period parallelogram vanishes. Evaluate 
over the remainder of aA and use the identity ~r.r k IZk 12 

2 2 J } = - 2( 1M I - (~)~rj IZj I ) to show that the energy E 
has the asymptotic form 

E = H - 4~ (L rJ )tn E. (3.9) 

If the total circulation is nonzero, the conjugate flow 
V(r) does not have a potential, but can be approximated by 
potential flows in the following standard way. Consider the 
period parallelogram centered about M I~, or equivalently, 
let M = 0 and take the period parallelogram about the ori­
gin. In this region, distribute N 2 vortex lattices of circulation 
- ~/N2 to form a lattice L IN, with the generators wlIN, 

w21 N. The conjugate flow due to these added vortices is 

-(2 ~N2) L So(Z-w') = -(2~N);o(Nz), 
1Tl w'ELIN 1Tl 

(3.10) 

with the limiting form - (~pI2i)z away from the poles. 
[Here we have used the homogeneity relation 
;o(Z;WI,W2) =A;o(AZ;A.WI,AW2 ).] The resulting (neutral) 
configuration has a potential II> N and in the limit of large N 
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the conjugate flow uniformly approximates V(r) onA N , the 
complement of the disks of radius EN -3/2 around the added 
vortices. Thus the energy E of the original configuration is 

E = lim - (l.-) ( 1m <l>Nd(Re <l>N)' (3.11) 
N_ 00 2 Ja(AnA

N
) 

A straightforward computation shows that E differs from 
(3.9) by integrals that do not depend on the positions Zj' 

We conclude that as with finite-vortex configurations, 
H gives the interaction energy, or that part of the energy that 
depends on the vortex lattice positions. Hence the total ki­
netic energy differs from Hby a function of the lattice gener­
ators OJ I' OJ2 and the cutoff E: This difference can be found by 
direct integration for a simple lattice.4 An easier method is to 
use the lattice symmetry and the Hamiltonian to find this 
energy through vortex rearrangements. 

First consider a single vortex lattice, that is, a doubly 
periodic configuration with a single vortex in each period 
parallelogram. Let E(r,l,E) be the energy of a unit cell of 
area /2 containing a single vortex of circulation r and cutoff 
radius E and let E( 1, I,E) = EI - (1/41T) In E. The quantity 
EI depends only on 7. By examining the integral of the ener­
gy density, one sees that 

E(r,l,E) = r 2E(1,I,dl); (3.12) 

thus it suffices to find E I • 

Place four vortex lattices of circulation! with a unit cell 
of unit area in two different configurations: (i) All six inter­
vortex distances Zjk are small compared to 8, but large com­
pared to E and (ii) the vortex positions form a lattice L I with 
half the periods of L, (ZI' Z2' Z3' Z4) = (0, OJ I/2, OJ2/2, 
(OJ I + OJ2)/2). Let EA, EB be the energies of these two con­
figurations, with cutoff radius E. The difference E A - E B is 
given by the change in the interaction energy HA - H B. The 
individual energies can be found by elementary consider­
ations: 

EA = E(l,I,8) + (energy inside the 8 disk) 

= EI - _1_ (l.-ln E + I _1-lnlzjk I), 
41T 4 Nk 16 

(3.13 ) 

EB = 4E(M,E) = HEI - (l/41T) In 2E]. 

Take the relation EA - EB = HA - HB and note that 
the sums involving logarithms, which become singular as 
8 ..... 0, cancel (to order 8, E). Then solve for E I : 

EI = H - (l/I61T) In 2 - H B]. (3.14) 

The term H B can be evaluated using various properties of the 
theta functions. Summing over all differences produces the 
logarithm of the quantity 

1t?1 (!)t?1 (r/2)t?1( (1 + 7)/2W 

= Iq-I/2t?0(0)t?2(0)t?3(0) 12 = exp( 1TY) It?; (0)11T1 2. 
(3.15 ) 

After some algebra, we find HB expressed as follows: 

HB = (l/41T)(pnlt?;(0)1-~lnI0J11 +!ln1T). (3.16) 

Since the lattice density p = 1, we have 0 = InlOJ I12 + lny. 
Thus 

EI = - (1/41T) (j In 21T + j Inlt9-; (0) I+! lny). 
( 3.17) 
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Expression (3.17) agrees with that given by Tkachenk04 for 
the energy of a single-vortex lattice (although a different 
definition of t?1 is used). 

Now it is easy to find, by a similar rearrangement argu­
ment, the energy for a period parallelogram containing sev­
eral vortices. Given vortices of circulation rj at positions Zj' 

move them into a 8 disk at M I~. The change in energy is !lH 
and the energy outside the disk is (~rj)2 E( 1,1,8). 

Theorem 2: The energy E of a (unit area) unit cell of a 
vortex lattice configuration containing vortices of circula­
tions rj at positions Zj ,j = 1 , ... ,n, with the lattice generators 
OJ I, OJ2, and the cutoff radius E, is given by 

(3.18 ) 

Denoting the energy density formula ofCampbell5 by E, 
the following relation has been verified numerically: 

E = (41Tln)E + (~n/2n) In(nc). (3.19) 

As an application of Theorem 2, we find the energy of a 
simple lattice with periodic defects. Fix a complex number Z 

and an integer N. Take a simple lattice with period Land 
circulation r and move the vortex at NOJ to (NOJ + z) for 
each OJEI.. For simplicity, assume that N is odd, so that the 
centers of vorticity of the original lattice and the defect lat­
tice coincide. We shall find an expression !lEN (z) for the 
resulting change in the kinetic energy of the fluid in the N 2 

unit cells of L which make up a unit cell of the new periodic 
configuration (in other words, the change in energy per de­
fect). Since the energy change is from rearrangement, we 
may ignore the self-energy (In E) terms, change the scale by 
a factor 1/ N, and apply Theorem 2 to the resulting configu­
ration of N 2 vortices, all on LIN except for the single lattice 
displaced by 1] = zi N. The change in energy for the configu­
ration is 

Consider the derivative with respect to 77: 

~ !lEN(z) 
J77 

r 2 _ 

--I [;o(1]-OJ) -1Tp(1]-OJ)] 
41T 
r 2 _ _ 

- - [N;o(N1]) - ;0(1]) - (N 2 
- I)1Tp1]]. 

41T 
(3.21 ) 

Integrate, using the condition !lEN (0) = 0, to find 

!lEN(z) = - (r2/41T) [lnluo(z)INuo(zIN) 12 

- (l-N-2)1TplzI 2]. (3.22) 

Equation (3.22) is an exact result. For large N, the change in 
energy per defect approaches the limiting value 

!lEoo (z) = - (r2/41T) [lnlz-luo(Z) 12 _1TplzI 2
], (3.23) 

which is a function with period L minus the interaction ener­
gy of the displaced vortex at Z with a vortex at the origin. The 
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result (3.23) can be compared to a previous (computation­
ally intensive) study of simple lattices with periodic vacan­
cies. II It should also be noted that combinations of lattice 
defects of the above type are relevant to the study of the 
stability of vortex lattices. 12,13 For example, a simple calcu­
lation shows that the energy of small defects can be negative 
only if the lattice shape is such that p2 < 1 a 12 holds. 

IV. STATIONARY LATTICE CONFIGURATIONS 

A stationary lattice configuration is one in which all 
vortex velocities vanish in the rotating reference frame, that 
is, the configuration is a relative equilibrium in the fixed 
frame. Finding such configurations corresponds to solving 
the system of equations VI = '" = Vn = 0, or by (3.1), 
finding the critical points of the Hamiltonian. 

If the total circulation ~ vanishes, the vortex lattice ve­
locities are given with respect to a moving reference frame: 
The critical points of H do not correspond to equilibria, but 
to configurations at rest in this frame. Because the rotation 
terms vanish, methods of algebraic geometry can be applied 
and the total number of configurations that are at rest in 
some moving frame can be counted. 14 

If, instead, all circulations are positive, a lower bound 
for the number of relative equilibria can be obtained by using 
an idea of Palmore. 15 The Hamiltonian goes to infinity on 
the diagonall:l. and all critical points of H lie on a compact 
subset of Tn - I - I:l.. If the Hamiltonian is a Morse function 
(all critical points are non degenerate) , then a lower bound 
for the number of these critical points and their indexes can 
be computed from the Betti numbers of Tn - I - I:l.. 

A simpler task, which is the goal of this section, is to find 
a special class of relative equilibria analogous to the collinear 
configurations of celestial mechanics. Let a collinear vortex 
lattice configuration denote one in which all Zj lie on a edge 
or a diagonal of a unit cell, so that all differences Zjk are 
parallel to CUI' CU2 or CUI ± CU2• 

Consider now a lattice L that has a line of symmetry; we 
may assume that the line is the real axis, so that L is invariant 
under complex conjugation: L = I. There are two types of 
such lattices: rectangular (with cu21 CUI pure imaginary) and 
rhombic (with CU2 = WI)' Important special cases are the 
square lattice (cu2lcul = i) and the triangular lattice (cu21 
CUI = ( ± I + iv'J)/2). 

Theorem 3: Let L have a line of symmetry and fix n > 2 
positive circulations. Then there are at least 2 (n - I)! col­
linear relative equilibrium configurations of n vortex lattices 
with these circulations. If L is square or triangular, there are 
at least 4(n - I)! collinear relative equilibria. 

Proof' If L = I, the definition of the vortex velocities as 
circular limits shows that all velocities are pure imaginary or 
real if all differences Zjk are real or pure imaginary, respec­
tively. Thus the vortex velocities JIj will be perpendicular to 
the line containing the vortices for such a configuration, so 
that half of the (real) partial derivatives of H always vanish. 
Stationary collinear configurations are thus critical points of 
H restricted to the space of configurations lying along the 
line, (S I)n - I _ I:l.. The diagonal divides this configuration 
space into components: one for each ordering of the vortices 
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FIG. 1. Streamlines of a simple triangular lattice. The curves are interpolat­
ed from data on a 60 X 60 grid. 

in the unit cell and (n - I)! in all. If the circulations are 
positive, then H -+ 00 on the boundary of each component; 
thus each component contains at least one critical point 
(whether H is or is not a Morse function). 

Thus we find at least (n - I)! collinear configurations 
on each diagonal of a rhombic unit cell and on the two sides 
of the rectangular unit cell. Since a square lattice is both 
rectangular and rhombic and a triangular lattice is rhombic 
in two different ways, we obtain four lines containing collin­
ear relative equilibria and the higher estimates apply in these 
cases. This completes the proof. 

FIG. 2. Streamlines of a simple lattice, T = 0.4 + 1.2i. 
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FIG. 3. The relative motion of three triangular lattices with zero net circula­
tion. The diagram is centered around the origin and the curves trace out z '3' 

Here (f"f2,f3) = (1,1, - 2), M = O. 

v. LOW-DIMENSIONAL EXAMPLES 

Recall that the differential equations (2.10) produce a 
flow on the configuration space Tn - • - fl, which has real 
dimension 2n - 2, and that the real-valued function H is 
conserved by the motion. Thus the level sets of H contain the 
integral curves of the dynamical system and have codimen­
sion one. When n = 2 and ~ is nonzero, these level sets will 
be the integral curves, independent of the circulations r., r 2 

(since they are the streamlines of a simple lattice.) 
Figures 1 and 2 show some level sets of H for 

7 = (1 + iY3)/2 and (0.4 + 1.2i), respectively. [In all the 
figures, the configurations ZI2 = 0)./2, 0)2/2, and 
(0). + 0)2)/2 are seen to be relative equilibria because the 
functionto(z) - 1Tpzisodd, has periodL, and hence vanish­
es at these points.] Some lattices have two additional relative 
equilibrium configurations, which are minima of H, al­
though configurations may not be minima of the total energy 
when variations in the lattice shape are considered. The mor­
phology of energy minimizing configurations of two vortex 
lattices has been explored numerically.5 

If the total circulation ~ is zero, the two-lattice case is 
uninteresting: All configurations translate uniformly, that 
is, (z. - Z2) is a constant of the motion. However, the level 
sets of H can be used to trace out the relative motion of three 
vortex lattices. Writing the relative positions as 
W. = Z. - Z3' W2 = Z2 - Z3' we have r.w. + r2w2 = M 
= const; thus there is only one independent coordinate for 

fixed M. Thus the level sets of H as a function of w. will give 
the trajectories of Z. in the frame moving with Z3' Such curves 
for a triangular lattice and M = 0 are presented in Figs. 3 
and 4 for two different choices of circulation: Here the criti­
cal points represent configurations that translate uniformly 
(WI and W2 are constant). If the three vortex lattice positions 
are such that the differences Zjk are all half-periods, then the 
configuration will be at rest. 
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FIG. 4. Same as in Fig. 3, but with the circulations (I,v2, - 1 - v2). Note 
the loss of periodicity. 

Because M is fixed, H as a function of w. is not in general 
periodic with period L. If the ratio of circulations r ./r 2 is 
rational, then H will be periodic on some multiple of L; how­
ever, if the ratio is irrational H will be aperiodic. This can be 
seen in Figs. 3 and 4. 

One can find uniformly translating configurations by 
solving the single equation t(w. - w2 ) = t(w.) - t(w2 ), 

or in terms of the Weierstrass elliptic functions, 

0= (p'w. + p'w2)/(pw. -fpW2)' 

If M is near zero, examination of the Laurent expansions 

p(Z)=Z-2+ ... , p'(Z)=Z-3+ ... 

shows that there will be a pair of solutions near w. = 0 corre­
sponding to the equilateral triangle configurations of three 
vortices which translate uniformly.·4 

ACKNOWLEDGMENT 

I would like to thank L. J. Campbell for introducing me 
to this subject. 

'L. J. Campbell and R. M. Ziff, "Yortex patterns and energies in a rotating 
superfluid," Phys. Rev. B 20, 1886 (1979). 
'c. E. Seyler, "Thermodynamics of two-dimensional plasmas or discrete 
line vortex fluids," Phys. Fluids 19, 1336 ( 1976). 

'L.F. Greengard, "The rapid evaluation of potential fields in particle sys­
tems," Ph.D. thesis, Yale University, 1987. 

4y. K. Tkachenko, "On vortex lattices," SOy. Phys. JETP 22,1282 (1966). 
5L. 1. Campbell, "Yortex lattices in theory and practice," in Proceedings of 
the SIAM Workshop on Mathematical Aspects of Vortex Dynamics, Lees­
burg, YA, edited by R. Caflisch (Society for Industrial and Applied Math­
ematics, Philadelphia, 1989); M. M. Doria, J. B. Kadtke, L. 1. Campbell, 
"Energy of infinite vortex lattices," to be published. 

6M. L.Glasser, "The evaluation oflattice sums. III," J. Math. Phys. 15, 188 
(1974). 

7N. E. Kochin, I. A. Kibei, and N. Y. Roze, Theoretical Hydromechanics 
(lnterscience, New York, 1964), p. 201. 

"A. L. Fetter, "Quantum theory ofsuperfiuid vortices. I," Phys. Rev. 162, 
143 (1967). 

"Reference 7, p. 214. 
lOY. P. Goncharov, "Dynamics of solitary dissipative vortices: vortex lat­

tices and their stability," Sov. Phys. JETP 22, 976 (1986). 

Kevin A. O'Neil 1378 



                                                                                                                                    

"J. B. Kadtke, "Equilibria, lattices, and chaotic dynamics of point vorti­
ces," Ph.D. thesis, Brown University, 1987. 

12A. L. Fetter, P. C. Hohenberg, and P. Pincus, "Stability of ,I lattice of 
superfluid vortices," Phys. Rev. 147,140 (1966). 

"V. K. Tkachenko, "Stability of vortex lattices," Sov. Phys. JETP 23,1049 

1379 J. Math. Phys., Vol. 30, No.6, June 1989 

( 1966). 
14K. A. O'Neil, "Symmetric configurations of vortices, " Phys. Lett. A 124, 

503 (1987). 
"J.1. Palmore, "Relative equilibria of vortices in two dimensions," P~oc. 

Nat. Acad. Sci. 79, 716 (1982). 

Kevin A. O'Neil 1379 



                                                                                                                                    

Nearest neighbor lattice statistics on semi-infinite two-dimensional 
rectangular lattices of various widths 

J. M. Maeder and R. B. McQuistan 
Department of Physics and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 
Milwaukee, Wisconsin 53211 

(Received 26 January 1988; accepted for publication 25 January 1989) 

Recent results of the shift operator matrix technique are utilized to calculate an exact 
expression for the lattice coverage of simple indistinguishable interacting molecules adsorbed 
on a semi-infinite two-dimensional M X 00 rectangular lattice. As an illustrated example, 
parameters are chosen which most likely model the adsorption of the noble gas Ne on a 
graphite surface. The lattice coverage is determined as a function of the activity. temperature, 
and interaction potentials for lattices of increasing width (M = 1-7). 

I. INTRODUCTION 

No chemical/physical system is without boundaries and 
so actual phase transitions occur in spaces of finite extent. It 
is clear from recent work that the results of the shift operator 
matrix (SaM) treatment of nearest-neighbor interacting 
particles on finite width lattice spaces can be used for certain 
systems to calculate successfully critical temperatures that 
agree quite well with experiment. Recently, George et al., I 
using the results of previous work on a 2 X N lattice,2,3 have 
shown that even such narrow lattice spaces can be used to 
predict the critical temperatures of the two-dimensional 
phase transitions exhibited in the heat capacities of adsorbed 
noble gas submonolayer films. Thus questions arise as to the 
effect of increasing the width of such lattice spaces on the 
statistical/thermodynamic properties of a system, such as 
the calculated critical temperature for phase transitions of 
all kinds, including melting, heat capacities, etc., and on the 
sharpness of the "maxima" that occur near critical tempera­
tures. 

Previous investigations have shown that the SaM con­
tains all the information necessary to treat the thermody­
namics of a system of nearest-neighbor interacting, simple 
indistinguishable particles on M X N latticespaces. 4The use­
ful result obtained is that the grand canonical partition func­
tion, in the thermodynamic limit (N-+ (0), can be deter­
mined completely from the largest eigenvalue of the SaM. 
In light of this, thermodynamic calculations on lattices 
wider than the 2 X N lattice become feasible. 

In the present paper, we shall calculate the coverage in 
terms of the largest eigenvalue ofthe SaM and examine the 
dependence of selected adsorption isotherms on the width of 
the lattice space, i.e., for increasing values of M. In particu­
lar, adsorption isotherms are calculated for various values of 
M for a system which has received considerable attention 
recently, I the noble gas Ne adsorbed on graphite basal 
planes. Here the adsorbed gas atoms are modeled as indistin­
guishable, simple particles that occupy a single lattice site, 
distributed on a M X N rectangular lattice space experienc­
ing only nearest-neighbor interactions and interactions with 
the lattice. It is to be expected that as M is increased, the 
finite width of the lattice space should become less important 

in the sense that calculated statistical/thermodynamic 
quantities, such as lattice coverage and heat capacity signa­
tures, are expected to approach their limiting behavior for 
two-dimensional lattices of infinite extent. 

II. THE SHIFT OPERATOR MATRIX 

To determine the SaM, wefirsttakeaM XN lattice and 
decompose it into 2M lattice subspaces a i (N) (i = O-M, with 
m = 2M - 1) categorized by the state of occupation of the 
NthcolumnoftheM XN lattice. EachsiteintheNthcolumn 
of the M X N lattice can exist in only one of two states of 
occupation, either the site is occupied by a particle or it is 
vacant. Thus we can think of each site in this column as a bit 
in the binary representation of a decimal number, being uni­
ty if the site is occupied and zero otherwise. Using this corre­
spondence we define each ai (N) as a subspace with the Nth 
column in a configuration specified by the binary bit pattern 
of the decimal number i. By convention we will associate the 
least significant bit of i with the top site in the Nth column. 
The occupation of the sites in the remaining columns on each 
lattice subspace is not specified. 

In order to simplify the matrices that we shall encounter 
later it will be convenient to distinguish between vertical 
nearest-neighbor pairs and horizontal nearest-neighbor 
pairs. Here Ai [N,q,nv,n h ] is the number of ways ofarrang­
ing q particles on a ai (N) lattice subspace in such a way as to 
create nv vertical nearest-neighbor pairs and nh horizontal 
nearest-neighbor pairs. To illustrate the procedure for deter­
mining the SaM consider a 2XN lattice (see Fig. 1). By 
definition, ao(N) has both lattice sites of the Nth column 
unoccupied, a I (N) has only the top lattice site of the Nth 
column occupied, az(N) has only the bottom lattice site of 
the Nth column occupied, and a3 (N) has both sites of the 
Nth column occupied. 

The system of coupled recursion relations which lead to 
the SaM is formed by considering how many particles, nv 
and nh pairs, are removed when one removes the Nth col­
umn of a particular lattice subspace. With these consider­
ations, and the use of Fig. 1, we obtain the four coupled 
linear recursion equations: 
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Ao[ N,q,nu,nh ] = Ao[ N - l,q,nu,nh ] + AI [N - l,q,nv,nh ] 

+ A z [N - l,q,nv,nh ] + A3 [N - l,q,nu,nh ], (la) 

A1[N,q,nv,nh ] =Ao[N-l,q-l,nu,nd +A 1[N-l,q-l,nu,nh -1] 

+Az[N-l,q-l,nu,nh]+A3[N-l,q-l,nu,nh -1], 

Az[N,q,nv,nh] =Ao[N-l,q-l,nv,nh ] +A 1[N-l,q-l,nv,nd 

+Az[N-l,q-l,nv,nh -I] +A3[N-l,q-l,nv,nh -1], 

A3[N,q,nv,nh ] =Ao[N-l,q-2,nv -I,nh ] +A 1[N-I,q-2,nv -l,nh -1] 

+Az[N-I,q-2,nu -I,nh -I] +A3[N-I,q-2,nu -I,nh -2]. 

(lb) 

(lc) 

(ld) 

Ifwe now use the set of shift operators R = (R,S,T,U) 
defined such that 

R rssT,uuA
j 
[N,q,nu,nh ] 

=A;[N-r,q-s,nv -t,nh -u], 

Eqs. (Ia)-( Id) can be written in matrix form 

(

AO[ N,q,nv,nh]) 
AI [N,q,nv,nh ] 

[peR) - I] = 0, 
Az [N,q,nv,n h ] 

A3 [N,q,nu,nh ] 

where 

( 

R 
RS 

peR) = RS 

RSzT 

R R 
RSU RS 

RS RSU 
RSzTU RSzTU 

and I is the 4 X 4 identity matrix. 

(2) 

Examination of the manner in which peR) is formed 
from the recursion relations Eqs. (Ia)-( Id) show that each 
matrix element can be written as 

1IIIIlm 

IIIIIHEE 
I 
I 

Ao[N-1, q-2, n. -1, nh) 

~m + A1[N-1, q-2, n.-1, nh-1) 

I I_I II 11m + A2[N-1, q-2, n.-1, nh-1) 

I 

FIG. I. The decomposition of the degeneracy A, ofa a,(N) lattice in terms 
ofthe degeneracies Ao, A" A 2, A3 of the ao(N - I), a,(N - 1), a2 (N - I), 
and Q 3 (N - I) lattice formed by removing the Nth column of the original 
Q3(N) lattice. 
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I 
(4) 

wheres j , to and uij are the number of particles, vertical near­
est-neighbor pairs, and horizontal nearest neighbor pairs 
that are removed when one starts out with a a j (N) lattice 
subspace and removes the Nth column to form a a j (N - 1) 
lattice subspace. In terms of the row number i and column 
numberjofthe matrix peR), Sj equals the number of ones in 
the binary representation of i, t; equals the number of ones 
that are adjacent to each other in the binary representation of 
i, and uij equals the number of ones in the binary representa­
tions of i which match up bit by bit with the ones in the 
binary representation ofj. Thus the functional form for each 
matrix element ofP(R) can be determined completely from 
its row and column number. Since the way in which the 
elements Pij (R) are formed from the set of coupled recur­
sion relations does not depend on the width of the lattice, Eq. 
( 4 ) holds for a M X N lattice occupied by simple particles as 
prescribed above. It follows that the matrix equation for the 
M XN latticeanalogoustoEq. (2) fora2XN lattice is given 
as 

(5) 

where the elements Pij(R) are given by Eq. (4) with i andj 
ranging from 0 to m = 2M - I, and I is now the 
(m + 1) X (m + 1) identity matrix. 

III. DETERMINATION OF THE GRAND CANONICAL 
PARTITION FUNCTION 

The grand canonical partition function is written 

g(N,x,y,z) = I A [N,q,nv,nh ]xnhyn"zq, (6) 
{q,n,,.nll} 

where A [N,q,nv,nh ] is the total degeneracy factor for the 
complete M X N lattice. It is to be understood that we are 
working with some particular finite value of M in this and 
the following sections. The parameters q, nv, and nh range 
over all permissible values with 

x = exp [ - PVd, 

y=exp[ -PVu ]' 

z=exp[ -P(Vo-,u)]' 

(7a) 

(7b) 

(7c) 

in which,u is the chemical potential of the adsorbed parti-

J. M. Maeder and R. B. McQuistan 1381 



                                                                                                                                    

cles, /3 = 1/ (ks n with ks the Boltzmann constant and T 
the absolute temperature, Vv is the interaction energy be­
tween two vertical nearest-neighbor particle-particle pairs, 
Vh is the interaction energy between two horizontal nearest­
neighbor particle-particle pairs, and Vo is the interaction 
energy between a particle and the surface. To calculate 
g(N,x,y,z) it will be convenient to define the "super grand 
canonical" generating function: 

'" 
h(x,y,z;T/) = I g(N,x,y,Z)1/N (8a) 

N~I 

= I A [N,q,nv,nh ]xnh./"z"1/N. (8b) 
{N.q,n"nh} 

This function can be calculated explicitly, as will be shown 
subsequently. Once we obtain h(x,y,z,1/) we can determine 
g(N,x,y,z), using Eq. (8a), by the simple relationship 

(Nx z) = _1_ aN
h(x,y,z,1/) \. (9) 

g , ,y, N' a N 
. 1/ "I~ 0 

For each Ai [N,q,nv,n h ] define generating functions: 

hi (x,y,z,1/) = I Ai [N,q,nu,nh ]xnh/':z'i1/N. (10) 
{N,q.n"n.} 

If we now multiply both sides of Eq. (5) by x n
,)/''zq1/N and 

sum over all permissible values of {N,q,nu,n h }, we obtain 

(11 ) 

By rearranging summation indices, it is easy to show5
•
6 that 

(

hO(X,y,Z,1/») (fo(x,y,Z,1/») 
h j (x,y,z,1/) fl(x,y,Z,1/) 

[P(x,y,z,1/) - I] : = : ' . . 
hm (x,y,z,1/) fm (x,y,z,1/) 

(12) 

where P(x,y,z,1/) is obtained from P(R,S,T,U) by the re­
placement of the shift operators R, S, T, and Uby the vari­
ables 1/, z, y, and x, respectively. The functionsfk (x,y,Z,1/) 
are polynomials that depend only on the initial conditions 
imposed on the Ai [N,q,nv,n h ]. Applying Cramer's rule to 
Eq. (12), we have 

F,(x,y,Z,1/) 
h,(x,y,Z,1/) =, (13) 

D(x,y,z, 1/) 

where again F, (x,y,z, 1/) is a polynomial depending only on 
the initial conditions imposed on the Ai [N,q,nv,n h ], and 
D(x,y,z,1/) is the determinant of [P(x,y,z,1/) - IJ. By the 
way in which theM XN latticeisdecomposedintotheai(N) 
lattice subspaces it is clear that the total degeneracy factor 
A [N,q,nv,nh ] for the M xN lattice is just the sum of the 
degeneracy factors for the individual lattice subspaces. With 
this is mind, Eqs. (10) and (13) show that h (x,y,z, 1/) in Eq. 
(8) is now given by 
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h( ) 
F(x,y,Z,1/) 

x,y,Z,1/ = , 
D( x,y,z, 1/) 

(14) 
m 

F(x,y,Z,1/) = I F,(x,y,Z,1/). 
I~O 

Consider F(x,y,z,1/) andD(x,y,z,1/) in Eq. (14) as poly­
nomials in 1/. Ifwe perform a partial fraction decomposition 7 

on h(x,y,z,1/) and use Eq. (9), we find that in the thermody­
namic limit of large N, g(N,x,y,z) is given asymptotically 
by6.8 

g(N,x,y,z) = C(1I1/1)N, (15) 

where 1/1 is the smallest root of D(x,y,z,1/) which is consid­
ered as a polynomial in 1/ and where c may be a function of 1/1 
but does not depend on N. It should be emphasized that we 
are only concerned with finite width lattices (M finite) at the 
moment. The thermodynamic limit envisioned concerns 
only the length of the lattice. When this model is used to 
calculate adsorption isotherms, the lattice is exposed to an 
essentially infinite reservoir of particles in the form of a gas 
phase above the lattice. For a macroscopically long lattice 
under these conditions it is entirely consistent to use the 
expression of Eq. (15). This calculational procedure is well 
known and covered extensively in the literature.9

-
13 In this 

same limit, the logarithm of the grand canonical partition 
function becomes 

In [g(N,x,y,z) J = Nln (1/1/1)' (16) 

At this point it is clear that we need only calculate the small­
est root of D(x,y,z,1/), the determinant of the matrix 
P(x,y,z,1/) - I. 

Each element of the matrix P(x,y,z,1/) contains a single 
factor of 1/, allowing us to write 

P(X,y,Z,1/) = 1/Q(x,y,z), (17) 

where Q(x,y,z) = P(x,y,z,1/)/1/. Thus solving 
det[P(x,y,z,1/) - I] = 0, considered as a polynomial in 1/ 
for the smallest root 1/1' is equivalent to solving 

det [Q(x,y,z) - All] = 0 (18) 

for the largest eigenvalue Al = 1/1/1 of the matrix Q(x,y,z). 
In terms of Aj , Eq. (16) becomes 

In [g(N,x,y,z)] = Nln AI' (19) 

With this explicit expression for the logarithm of the grand 
canonical partition function, we can now calculate the ex­
pectation of the lattice coverage. 

IV. EXPECTATION OF THE LATTICE COVERAGE 

To determine the expectation of the lattice coverage 
(0) M xN' we define 

(B)MXN = (q)MXNIMN, (20) 

where 

Thus 
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z a 
«()MXN =---In[g(N,x,y,z)] (22a) 

MNaz 

z aA I (22b) =----
MAl az 

Since each element of the matrix P in Eq. (4) is strictly 
greater than zero, the Perron-Frobenius theorem 14 guaran­
tees that the largest eigenvalue is nondegenerate. The deriva­
tive aAllaz can therefore be determined from the corre­
sponding eigenvector. Consider the eigenvalue equation for 
AI 

(23) 

From Eq. (4) it follows that each element in any given row 
of Q(x,y,z) contains the same function of y and z, allowing 
us to write Q(x,y,z) as 

(24) 

where (Q)ij =y'iZSiDij and (QI)ij =xu'J with Dij the Kron­
ecker delta. Ifwe now substitute Eq. (24) into Eq. (23) and 
use the renormalization 

VTQ2-IV = I 

we obtain 

(25) 

VTQIV = AI' (26) 

By differentiating Eqs. (25) and (26) with respect to z and 
inserting the identity matrix in the form Q2Q2- I or Q2- IQ2 

where appropriate we are led to the result 

I aA I _ T(Q-I)' --- -v 2 V. 
AI az 

(27) 

Combining this with Eq. (22b) gives us an expression for the 
coverage 

«()MXN =ZVTQ2-2Q2VIM. (28) 

The form ofEq. (28) allows us to calculate «() MxN from 
the eigenvector [with normalization defined by Eq. (25)] 
corresponding to the largest eigenvalue of the SaM Q (x,y ,z) 
by standard numerical techniques, 15.16 the power method 17 

being most suitable in this case. 
We have chosen an interaction potential,I.18.19 which 

most likely describes a real two-dimensional system and cal­
culated numerically the coverage from Eq. (28) for values of 
M ranging from I to 7. The relevant interaction potentials 

1.0 
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.0 
-8 -6 -4 -2 0 2 4 6 8 
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FIG. 2. The coverage for lattices ranging from one to seven sites wide as a 
function of LN(z) with V,lkB = Vhlk B = - 13.6 at the temperature of 
140K. 
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FIG. 3. The coverage as a function of LN(z) under the conditions of Fig. 2 
at the lower temperature of 20 K. 

for the rare gas Ne adsorbed on graphite basal planes mea­
sured in kelvins are VvlkB = VhlkB = - 34.6 and 
VolkB = - 378. For fixed interaction energies the variables 
x and y remain constant along any particular adsorption iso­
therm leaving only z to vary. Under these conditions, z varies 
through the chemical potential fl, which in turn depends on 
the pressure p of the surrounding gas phase. In fact, for an 
ideal gas 

fl = kB Tln(p) + C( T), (29) 

where Cis a function of Tonly. Therefore, in plotting «() vs 
In (z) at constant temperature as in Figs. 2--4, we are actually 
calculating adsorption isotherms ofNe adsorbed on graphite 
and observing how the coverage changes when the pressure 
of the gas phase is varied. 

Figures 2 and 3 show the dependence of the adsorption 
isotherms on M for two opposite extremes of the kelvin scale. 
The transition from Fig. 2 to Fig. 3 through the temperature 
scale is found to occur gradually, where in all instances the 
adsorption isotherms approach their limiting value realized 
for an infinite two-dimensional lattice quite quickly (as indi­
cated by the M = 7 curves). Figure 4 displays a set of ad­
sorption isotherms for the rare gas Ne adsorbed on graphite 
modeled on a semi-infinite two-dimensional lattice seven 
sites wide. Figures 2 and 3 in turn indicate that this set of 
adsorption isotherms can be considered predictive of ther­
modynamic behavior for Ne adsorbed on graphite modeled 
on an infinite two-dimensional lattice. 

w 
CI 
c( 

"" w M=7 > 
0 
0 

.5 

~ .4 

.3 
V .2 

.1 

'~8 -6 0 4 6 8 

LN(ZI 

FIG. 4. The coverage as a function of LN(z) over the temperature range of 
10--120 K, in steps of 10 K, for a lattice seven sites wide. 
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v. CONCLUSION 

A procedure has been presented for calculating the 
grand canonical partition function, starting from a set of 
coupled recursion relations derived from the lattice system 
of interest. Through the grand canonical partition function 
one then obtains an exact expression for the lattice coverage 
of an M X N rectangular lattice which depends on the width 
of the lattice. It is evident from the plots of the adsorption 
isotherms for Ne that the width of the lattice plays less of a 
role at high temperatures and an increasingly important role 
at very low temperatures. 
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It is shown that there exist bound states of the operator H ±..< = - (d 2/ dx2
) 

+ I. mEZ 15( . - (2m + 1 )1T) ± AW, W being an L 1 ( - 00, + 00) non-negative function, in every 
sufficiently far gap of the spectrum of Ho = - d 2/ dx2 + I mEZ 15(· - (2m + 1) 1T). Such an 
operator represents the Schrodinger Hamiltonian of a Kronig-Penney-type crystal with a 
localized impurity. The analyticity of the greatest (resp. lowest) eigenvalue of H..< (resp. 
H _ ..< ) occurring in a spectral gap as a function of the coupling constant A when W is assumed 
to have an exponential decay is also proven. 

I. INTRODUCTION 

In this paper we investigate some properties of the spec­
trum of the one-dimensional Schrodinger operator 
H ±..< =Ho ±AWwithA>O, 

d Z 

Ho = - -2 + 2:,15(· - (2m + 1)1T) 
dx mEZ 

and Wbeing a non-negative L 1 function. 
The Hamiltonian represents the Kronig-Penney model 

of a crystal with a localized impurity given by the short­
range potential W. 

There have been several papers l
-

5 investigating the 
spectrum of the operator H ±..< when Ho is the Schrodinger 
Hamiltonian with a piecewise continuous periodic potential. 
In Ref. 6 the case of a non periodic potential V having a 
"short-range" order, so that Ho = d 2/ dx2 + V still has gaps 
in its spectrum, is studied. The main tool in our analysis will 
be the Birman-Schwinger kernel. Furthermore, we will ex­
ploit the Gel'fand expansion for the resolvent of Ho (see 
Refs. 7 and 8) in order to have a convenient expression for 
the Birman-Schwinger kernel. 

By doing so we show that there is a band in the spectrum 
of Ho such that there exist eigenvalues of H ±..< in each gap 
on the right of that band and if A is sufficiently small we can 
find eigenvalues in each gap of a(Ho) = a ess (H ± A). 

Furthermore, we prove that under the stronger assump­
I 

cos ~En (e)x 

tion of an exponential falloff of W, the greatest (resp. low­
est) eigenvalue of H +..< (resp. H _ A ) occurring in a spectral 
gap is analytic as a function of the coupling constant A. 

The other important problem related to the asymptotics 
of the number of bound states in each gap will be studied in 
another paper. 

II. BOUND STATES OF Ho±A.WIN THE GAPS OF a{Ho) 

In this section we shall be concerned with the existence 
of bound states of Ho ± A Winside the gaps of a(Ho). 

First of all, let us recall that the spectrum of the unper­
turbed Hamiltonian Ho is given by 

a(Ho) = eQo [EZk+ 1 (0), (k + ~)2)) 

U C Q 1 [E2d 1T), k 2]) , 
En (e) being the nth root of the well-known Kronig-Penney 
equation 

cos 21T IE + (l/2{E) sin 21T {E = cos e (2.1) 

with eE[O,1T] (see Ref. 9). 
For each fixed e, {En (e)}: = 1 are the eigenvalues of the 

reduced Hamiltonian Ho(e) = (-d 2Idx2 )e +15(' -1T) 
whose eigenfunctions are given by 

<p~f)(x) = A ~f) 
- ((1 - i e 11 + eie»)cot~En (B)1Tsin ~En (B)x, 

(2.2) 
eie [cos ~En (B) (x - 21T) 

- ((1- eie 11 + eif))cot ~E" (B) 1T sin ~En (B) (x - 21T)], 

A ~e) being the normalization constant. 
In the particular cases when B = 0, B = 1T the eigenfunctions can be written as 

(2.3) 
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¢Ji~)(x) = (ll{iii) sin kx 

and 

¢JiZ,+ I (x) = (1I{iii) cos(k + px, 

(1T) ( sin 21T ~E2k (1T) ) - I 
¢J2k (x) = 1T---:-;~~~ 

2 ~E2k (1T) 

(2.4 ) 

(2.5) 

{
sin ~E2k (1T)X, 

X sin~E2k(1T)(21T-x), 1T<x<21T. 
(2.6) 

By means of some boring algebra we can determine the nor­
malization constant A ~ 0), precisely 

(0) [ sin21T~En(0) (I-COSO) 
An = 1T+ + 

2~En(0) 1 +cosO 

2 rFf"ii\( sin 21T ~ En (0) )] - 112 
Xcot 1T\,jEn(O) . 

2 ~En (0) 
(2.7) 

This immediately leads to the following result whose proof is 
omitted since it only consists of tedious calculations. 

Lemma 2.1: Let ¢J~O) be the nth eigenfunction of the 
reduced Hamiltonian Ho(O) = ( - d 2ldx2)() + 15(' '- 1T) 
acting on L 2 [0,21T] with BE [0,1T] . Then the following esti­
mate holds: . 

II¢J~O)II", <_1_[1_ (Sin 21T~)2] -1/2 (2.8) 
..[ii 21T~ EI (0) 

for any nEN and any BE [0, 1T ] . 

Remark: Since ¢J~21T- 0) = ¢J~O), because of the antiuni­
tarity of Ho(O) and Ho(O - 21T), the estimate (2.8) actually 
holds for any OE[0,21T]. We shall use this property later. 

After these preliminaries we consider the Birman­
Schwinger operator in our particular case. Since W is a defi­
nite-sign function our Birman-Schwinger operator is self­
adjoint.1t is not difficultto show that W 1/2 (H 0 - E) - I W 112 

(W>O) is trace class for any EEp(Ho). One can first prove 
that this holds for E < 0 since 

II W1/2(Ho - E)-I W 1IZ I1 1 

<II W1/2( - ::z -E) -I W 1IZ II I 

(2.9) 

for any E <0. 
Then, by using the first resolvent equation and the con­

nectedness of the resolvent set of Ho, it follows that the prop­
erty holds for any EEp(Ho). 

This implies that we are allowed to use the KLMN 
theorem (see Refs. 10 and 11) in order to define the self­
adjoint operator whose quadratic form is given by 

(t/I,(Ho±AW)t/I) = (t/I,Hot/l) ±A(t/I, Wt/I) 

for any t/lEQ(Ho)' 
Furthermore, we can apply the Fredholm theory to our 

Birman-Schwinger kernel. In particular, we can see that if 
W>O, E is an eigenvalue of Ho ± A W if and only if + 1 is an 
eigenvalue of AWI/Z(Ho - E) -I W1I2. 

In order to obtain some information about the eigenval-
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uesofWIIZ(Ho - E)-IW1I2 whenEbelongstosomegapof 
u(Ho), we express the BS kernel by means of the Gel'fand 
transform, namely, 

W1/2(Ho _ E)-IWI/Z 

I 121T IWI/Z¢J~O»(WI/Z¢J~O)I dO 

n = I 0 En (0) - E 21T 
(2.10) 

(¢J~() having been extended to the whole real axis by means 
of the 0 condition), which makes sense for any EEp(Ho) 
because of Lemma 2.1 and the fact that WEL I (R) as written 
in the Introduction. 

IfEE( - oo,EI(O)}, W1Iz(Ho - E)-I W1I2 is a positive 
operator which implies that only Ho - A W can have bound 
states lying in ( - 00, E) (O)}. 

If E lies inside a gap the series on the rhs of (2.10) gives 
rise to a negative term in the expectation value of the BS 
kernel with respect to t/I due to the integrals related to the 
bands on the left of the gap containing E. For simplicity, let 
us only consider the case related to Ho - A W. 

For our specific purpose we can neglect the negative 
term related to 

W1Iz(Ho - E) ~ W1IZ 

~ 121T IW1I2¢J~())(WI/Z¢J~O)1 dO 
L (2.11) 

n=1 0 E-En(O) 21T 

since it can only lower the eigenvalues of the positive opera­
tor 

(2.12) 

similarly defined. 
At this point we can start our analysis about the bound 

states of Ho - A W. First of all, we show the existence of 
bound states of Ho - A W in every sufficiently far gap of 
u(Ho)' 

Theorem 2.2: Let 

+'" L 15(' - (2m + 1)1T) 
m= - co 

and Wbe a positive function belonging to L I (R). Then, for 
any fixed A> 0, there exists a certain band of u(Ho) such 
that every gap on the right of that band contains eigenvalues 
ofH;. =Ho-AW. 

Proof: First of all, we notice that the integral related to 
the (2N + 1 )st band in the expression of 
WI/Z(Ho - E) :;: I WI/Z diverges when E---E 2N+ I (0) _ on 
the one-dimensional subspace {Wl/z¢Ji~+ I}' 

Therefore the norm of W 1/2 (Ho - E) :;: I W 1/2 in­
creases without limit when E ---E 2N + I (0)_. 

Since this operator is compact and positive its greatest 
eigenvalue is equal to the norm of the operator. If 
A II W1Iz(Ho - NZ):;: I W 1I2 11 < 1, there must be an HE(N z, 
E 2N + I (0)} such that AWI/Z(Ho-H)-IW1IZt/I=t/I, for 
some tfEL Z (R). Of course, a completely similar analysis can 
be carried out when EE(N + pZ, EZ(N+ I) (1T)} for any 
fixed N. Therefore we need to show that 
IIWI/z(Ho-Nz):;:IW1IzlI ___ OwhenN ___ + 00. 

For any t/I we have 
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(2.13 ) 

At this point we must prove that the series on the rhs of 
(2.13) goes to zero as N goes to infinity. First of all, let us 
consider 

00 i217 

1 L 2 dB. 
n~2(N+I) 0 En(B)-N 

(2.14 ) 

The term with n = 2N + 1 will be considered later. 
We can bound each integral in the series by replacing 

En (B) by means of E 2k (0) if n = 2k + 1 or E Zk _ I (1T) if 
n =2k. 

and 

Hence 

(

001 

(2.14).;;;21T L -----­
n~O (n + !)(2N + n + p 

00 1 ) 
+ n?o (n + 1)(2N + n + 1) . 

Since for any fixed N 

Ln + ~}(2~ + n + !>r~o 

{(n+ 1)(2~+n+ l)r~o 
are II sequences dominated by 

{ 1 Z } 00 Ell' 
(n+!> n~O 

(2.15 ) 

by means of the dominated convergence theorem we get that 
the rhs of (2.15) goes to zero as N ---> 00. 

In order to complete the proof of the theorem we only 
need to prove that 

1
217 1 

--------::;-z dB 
o E2N + I (B)-N 

(2.16 ) 

asN---> 00. 

For any 0 < E < 1T we have 

fE ------:-2 dB + il7 1 z dB 
Jo E 2N + I (B) - N E E 2N + I (B) - N 

(2.17 ) 

since E 2N + I (B) is an increasing function of B (see Ref. 12). 
By applying Taylor's theorem with remainder to (2.1) 

near {if = ~ E2N + I (0) we get 

COS21T~E2N+I(0) + 1 sin21T~EzN+I(0) 
2 ~EZN+ 1(0) 

- [(21T + _ 1 )sin 21T ~EZN + I 
2E2N+ I 

_ 1T cos 21T~] re- 2N+I 
V.l!.ZN+ I 

X(~EZN+ I (B) - ~EZN+ I (0») = cos B (2.18 ) 

[withE zN + I E(E 2N + I (O),E ZN + I (B»)], which implies that 
for B = E 

~E2N+I (E) -~E2N+I (0) 

1 
>-(1-cOSE) 

41T 

for N large, since 

cos 21T~E2N+ dO) + [2E2N + I (0)]-1 

X sin 21T ~E2N + I (0) = 1. 

Thus we obtain 

([E2N + I (E) -E2N + I (0)] +EZN+I(O) _N2)-1 

.;;;( [E2N + I (0)/21T] (1 - cos E) 

which implies 

(1T - E)/[ E2N + I (E) - N2]--->0 

(2.19) 

(2.20) 

(2.21) 

asN ---> 00 for any 0 < E < 1Tsince limN_ 00 [E 2N + I (0) - NZl 
= 1/1T (see Ref. 12). 

Therefore, for any 0 < E < 1T, we have 

il7 1 
lim Z dB 
N-oo 0 E2N + I (B)-N 

1
. E 

.;;; 1m Z = 1TE 
N-oo E2N + 1(0) - N 

(2.22) 

which gives (2.16). Q.E.D. 
As a consequence of Theorem 2.2, we have the following 

corollary. 
Corollary 2.3: If 

A< 1T[I-(sin21T~/21T~)Z] 
II Will [ (infl< n < 00 [an + I - bn ]) -I + 2~: ~ 0 ( n + ~) 2) -I] 

(2.23 ) 
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[(bn, an + I ) being the nth gap of u(Ho)} and with the same 
assumptions of Theorem 2.2, Ho - A W has eigenvalues in 
every gap of u(Ho) (the infis different from zero since there 
are no connected bands and an + I - bn converges to 1T- 1 as 
follows from the analysis in Ref. 12). 

Proof: From (2.13) and (2.15) we get 

<..1-- 1-"WI! I [ (sin 21T .JE2N + 1(0) )2] -I 
1T 21T .JE2N + I (0) 

(2.24) 

which is less than one for any N since A satisfies (2.23). By 
means of similar estimates we obtain the same result for the 
gaps ofthe type (N - ~)2, E 2N (1T»). Q.E.D. 

Of course, completely similar results hold in the case of 
Ho + A W. At this point we are going to investigate the be­
havior of the eigenvalues of Ho + A Woccurring in the gaps 
of u(Ho) for small values of the coupling constant A. 

with 

III. COUPLING CONSTANT THRESHOLD BEHAVIOR 
FOR HO-AW AT A=O 

In this section we are going to show that in the case of a 
non-negative potential W having an exponential falloff 
E 2N + I (A), the smallest eigenvalue of Ho - A W inside the 
spectral gap (E 2N (0), E 2N + I (0»), is an analytic function of 
A at A = O. First of all, we notice that 

lim E2N + 1 (A) = E 2N + 1 (0), 
,1_0 

since Ho - A W -.. Ho as ..1-..0 in the norm resolvent sense [in 
the case of the gap (N - ~)2, E 2N (1T»), E 2N (A) clearly con­
verges to E 2N (1T»). 

In order to show the analyticity of E 2N + I (A) at A = 0 
we shall follow the strategy used in Ref. 8 (p. 337) since we 
know that EE(E 2N (0), E 2N + I (0») is an eigenvalue of 
Ho - A W if and only if 

det(! - AWl/2(Ho - E) -I Wl/2) = O. (3.1) 

First of all, the BS kernel can be expressed as follows: 

Wl/ 2 (Ho _E)-IWl/2 

=MkI1+M¥)+_1_( tl7 1 dO) 
21T Jo E2N + 1 (0) - E 

X I W il2A.{O) ) (W l/2A.{O) I 
'l-'2N+ I 'l-'2N+ I (3.2) 

1
21T1WI'IA.(8) )(Wl/2A.{8) 1-IWI /2A.{O) ) (wl/2A.{O) I dO 

M {I) _ 'l-'2N+ I 'l-'2N+ I 'l-'2N+ I 'l-'2N+ I 
E -

o E2N + 1(0)-E 21T 
(3.3 ) 

and 

M¥) = I (217 I WI/I¢l~8»( WI/2¢l~8)1 dO. 

n"<2N+ 1 Jo En (0) - E 21T 
(3.4 ) 

First of all, we notice that the operator-valued functionM¥) is analytic atE = E IN + I (0). At this point we are going to show 
the boundedness of M kl

) (OJ under a suitable assumption on W 
2N+ 1 

Proposition 3.1: If WI 12EJ)(X2 ) then M kl
) {OJ is a bounded operator on L 2 ( - 00, + 00). 

2N+ I 

Proof: First of all, the integral expression M ~2~ + ,(O) can be written in a more convenient form by using the antiunitarity of 
the operators Ho(O) and Ho(21T - 0), i.e., 

i
TT IWI/2 ~)(WI/2 ~I + IW I /2 ~)<WI/2 ~1_2IWI/2~)(WI/2 ~I dO M (I) _ 'l-'2N + 1 'l-'2N + I 'l-'2N + 1 'l-'2N + 1 'l-'2N + 1 'l-'2N + 1 

E2N+ ,(0) - E 0) E 0) -2 ' 
o 2N + 1 ( - 2N + I ( 1T 

(3.5) 

which can also be written 

2 (TTIWI/2m¢li~+I)<wI/2m¢li~+11 + IWI/2fr¢li~+I)(WI/2fr¢li~+II-IWI/2¢liY+I)(WI/2¢liY+11 dO. 

Jo E2N+I(O)-E2N+I(0) 21T 
(3.6) 

At this point we want to show that the norm of the operator defined by (3.6) is finite. From the Kronig-Penney relation we 
know that the function E 2N + 1 (0) - E 2N + I (0) has only a zero at 0 = O. 

Furthermore, E 2N + 1 (0) - E 2N + 1 (0) goes to zero like 0 2 when 0 goes to zero since E 2N + I (0) is an even function and 

d
2
E 2N+ 1 (0) I 0 (3.7) 

d0 2 8=0 > 

as can be seen by computing the implicit function derivative by means of the Kronig-Penney relation. 
Therefore 0 = 0 is a removable singularity for the function 0 -2[E 2N + 1 (0) - E 2N + I (O)} which implies also 

inf 0 -2[E 2N+ 1 (0) - E 2N+ 1 (0») >0 
(,le[O,TTI 

since the function has no zeros in [0, 1T ) . 
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Consequently the operator norm of (3.6) is bounded by 

2( inf 0 -2[E 2N+ 1 (0) - E 2N+ dO) 1) 
BEIO,1T) 

X II.r 0 -2 [I wI/2m<pi~+ 1 >< wI/2m<pi~+ I I + I WI/2o:<p~~+ 1) 

X ( W 1/ 2q:,Ao«() 1-IWI/2A.(0) )(W I12 A.(O) I] dO II U'f'2N+ 1 'f'2N+ 1 'f'2N+ 1 21T . 

Since m<pi~ + 1 and O:<pi~ + I are real analytic functions of 0 we have the following McLaurin expansions: 

q:,A.(O) _ [ d q:,Ao(O) ] Ll 
U'f'2N + 1 - dO U 'f'2N + 1 0 = Ii !7 

for some BE(O,O) and 

mAo(O) _ .1.(0) + [ d 2 mAo(O)] 0
2 

'f'2N+1 -'f'2N+I d02 'I'2N+1 0=0.2 
for some O*E(O,O). 

Therefore (3.9) becomes 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

By using the explicit expression of <p~O) given in Sec. II, it is not difficult to show that there are two positive constants 
A ~N), B iN) such that 

I :0 O:<pi~+ 1 (x) I <;A ~N)lxl + BiN) 

for any real x and any BE[O,1T). Similarly we have 

l ~mAo(O) (x)I<:A (N)X2 +B(N)lxl + C(N) 
dB 2 'I'2N+I "" 2 2 

for some positive constants A iN), B ~N), C (N). 
These estimates together with our assumption on W 1/2 imply that the operator-valued integral inside the norm in (3.12) 

has norm bounded by 

2 Sa
1T 
[II WI12(A iN)lxl + B iN»II~ + II WI/2<pi~+ 111211 WI/2(A iN)X2 + B iN)lxl + C(N» 112 

+ 0
4

2

11 W 1/2(A iN)X2 + BiN) Ixl + C(N) II~ ] ~: < 00, (3.13) 

which completes the proof of the proposition. Q.E.D. 
Since M kl

) and M~) are both bounded at E = E 2N + I (0) it follows that, if E().) is a solution of (3.1) with the BS kernel 
given by (3.2), [I - ). (M 1!(~) + M ~~) ) ] is invertible for any A sufficiently small. Therefore, following Ref. 8, we only need 
to study the equation 

det[I _ ~( (21T 1 dB)1 WI/2<pi~+ I) 
21T Jo E 2N+ I (B) - E 

X (WI/2<pi~+ II [I - )'(Mkl
) + M~»] -I] = O. (3.14) 

Since for any rank 1 operator B we have det(1 + D) = 1 + Tr(D), (3.14) becomes 

1-~( (21T 1 dO)(WI/2<pi~+I' 
21T Jo E 2N + 1 (0)-E 

[I - )'(Mk1
) + M~»] -IWI/2<pi~+ I) = o. (3.15 ) 

At this point we state and prove the main theorem of this section. 
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Theorem 3.2: LetHobe the Kronig-Penney Hamiltonian. If W>Oand W 1I2ED(ealxl ) for some a > 0, then (a) En (A.), the 
smallest eigenvalue of Ho - A. Win the spectral gap (En _ 1 (0) , En (0) ) for n odd, (En _ 1 (1T), En ( 1T) ) for n even, is analytic at 
A. = o and 

En (A.) = En - ~~ (f: 00 W(x)[¢n (X)]2 dx yA. 2 + O(A. 2), 

where 

_ {En (0), n = 2k + 1, 
E = 

n En (1T), n = 2k, 

m* = {m~(O), n = 2k + 1, 

n m~(1T), n = 2k, 
_ {tP~o) (x), n = 2k + 1, 
tPn (x) = tP~r)(x), n = 2k, 

m~ (0) being the effective mass; (b) A. = 0 is a coupling constant threshold. 

( 3.16) 

Proof By setting E = E( 1]) = E 2N + 1 (0) - 1]2, 1] > 0 and multiplying both sides of Eq. (3.15) by 1] we get the equation 

1] -- 1] dO A.(1~ ) 
21T 0 [E2N+l(O)-E2N+l(0)] +1]2 

X (W1I2A.(0) [I-A.(M(1) +M(2) )]-IW I/2A.(0) )-0 'l'2N+ It E(7]) E(7]) 'l'2N+ 1 - • 

(3.17 ) 

Thus we must show the existence of the function 1](A.) solution ofEq. (3.17) in a neighborhood of A. = 0 and its analyticity at 
A. = o. 

In order to achieve this result we shall use the implicit function theorem applied to Eq. (3.17). Therefore we have to prove 
that F( 1],A.) given by the left-hand side ofEq. (3.17) is jointly analytic in 1] and A. at (1],A. ) = (0,0) and that F( 1],A.) satisfies 
the conditions F(O,O) = 0, (aF la1]) 0=/= O. 

First of all, we notice that M k~~) is an analytic function of 1] at 0 since 

( ,f, M (2) ,f,) = '" '1" 'l'n 1
21T I(,f, W 1I2A.(8» 12 dO 

'1', E(7]) 'I' £.. [0 2 n#2N+l 0 En() -E2N+ 1 (0)] +1] 21T 
(3.18 ) 

is an analytic function of 1] at 1] = 0 for any t/JEL 2 (R) which implies the analyticity of the operator-valued function M g.~) (see 
Ref. 13 for the relation between analyticity in the weak operator topology and norm analyticity). Now we must show the 
analyticity of the functions 

and 

f ( 1]) = (21T 1] 2 dO 
Jo [E 2N + 1 (0) -E 2N+ 1 (0)] +1] 

M(l) _ 'l'2N+ 1 'l'2N+ 1 'l'2N+ 1 'l'2N+ 1 1
21T IW1I2A.(8) )(W1I2A.(8) 1-IW1I2A.(O) )(W1I2A.(0) 1 dO 

E(7]) - 0 [E 2N+ 1 (0) - E 2N+ 1 (0)] + 1]2 21T 

at 1] = O. 
Let us begin by considering the first integral which can also be written as 

f1T 1] dO 

-1T g'2( 0) + 1]2 21T 

with 
00 

g'2( 0) = E2N + 1 (0) - E2N + 1 (0) = I P21 0 21. 
I~ 1 

Furthermore 

f
1T 1] dO = _i [f1T 1 dO _ f1T 1 dO] . 
-1T g'2(O) + 1]2 21T 41T -1T g(O) + i1] -1T g(O) - i1] 

( 3.19) 

First of all, we note thatg( 0) is real analytic and has an analytic extension to a complex neighborhood of ( - 1T, 1T). 
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If T] > 0 the singularity of 1/ [g( 0) + iT]] is located in the 
lower half-plane as can be seen by noticing that the leading 
term of the MacLaurin expansion of g( 0) is given by {3 ~/20 
with {3 y2 > 0 and therefore the solution of g( 0) = - iT] lies 
on the negative imaginary semiaxis. 

Thus we can choose the path of integration shown below 

-1T -E 1T 

and we have 

f" 1 dO 
-" g( 0) + iT] 

= J -E 1 dO + ( 1 dO 
-" g2 (0) + iT] Jr~ g( 0) + iT] 

+ J." 1 dO. (3.20) 
E g(O) + iT] 

of course we must choose the opposite path for the other 
integral 

f" 1 dO 
- " g( 0) - iT] 

= f -E 1 dO + ( 1 dO 
-" g( 0) - iT] Jr~ g( 0) - iT] 

+ dO. J.
-" 1 

E g(O) + iT] 
(3.21 ) 

Thus for any E> 0 we can find a suitable complex neighbor­
hood of the origin in which both integrals on the left-hand 
sides of (3.20) and (3.21) are analytic functions of T] since 
the integrands on the respective right-hand sides have no 
singularities along the path of integration. Therefore the 
function! ( T]) is analytic at T] = o. 

Furthermore, we obtain 

limf" T] 2 dO =(2d2E2N+/(O»)-1I2. (3.22) 
71-0 -" g2(O) + T] 21T dO 11=0 

By adopting a notation widely used in solid-state physics we 
can write the right-hand side of (3.22) as 

(m~N+ 1 (0)/2)1/2, 

m~N+ 1 (0) being the so-called effective mass evaluated at 
the left boundary of the (2N + 1) st band. 

Now we must show the analyticity of the operator func­
tion M kl(~) at the origin which is equivalent to showing that 
the function 

(t/J,M<i(~) t/J) 
= (2" 1(t/J,WI/2~i~+IW-I(t/J,WI/2~i~+1)12 dO 

Jo [E 2N+ 1 (0) - E 2N+ 1 (0)] + T]2 21T 
(3.23) 
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is analytic at T] = 0 for any t/JEL 2 (R). Let us show that the 
function 

p(O) = 1(t/J,WI/2~i~+1)12_1(t/J,WI/2~i~+1)12 

can be analytically extended to a complex neighborhood of 
the origin. As follows from our analysis of Sec. II, the gener­
alized eigenfunctions of our Hamiltonian are given by the 
Bloch functions 

- ((1 - eill)/(1 + eill
) )cot ~En (0) 1T 

xsin~En(O)(x-2m1T)] , (3.24) 

for XE[ (2m - 1 )1T, (2m + 1 )1T] and for any m. 
Since the eigenfunctions (3.24) are real-analytic func­

tions of 0 it follows that 

is a real-analytic rank-one operator-valued function due to 
the fact that WI/2~i~+1 is a real-analytic L 2 (R}-valued 
function. From (3.24) we have for 0 in a small neighbor­
hood of 0 

(3.25 ) 

for any XE[ (2m - 1)1T, (2m + 1 )1T}. 
We notice that for any Iml > 2, eillillmi is bounded by 

e(3/2)lil-II11x l. 

Therefore if I 'JO I < ja it follows from our assumption 
on W that WI/2~i~+ 1 EL 2(R}, which is equivalent to say­
ing that in any neighborhood of 0 satisfying I 'JO I < ja, P( O} 
defined as above is an analytic rank 1 operator-valued func­
tion which implies thatp(O} has an analytic extension to a 
complex neighborhood of the origin. This fact allows us to 
use a procedure similar to the one used for the function! ( T]) 

in order to show that the function (t/J,M 1!(71) ,t/J) can be ana­
lytically extended to a complex neighborhood of T] = o. 

By going back to Eq. (3.17) we obtain that the left-hand 
side is jointly analytic in T] and A. 

Furthermore we get 

{

F( T],A} 171 = -< = 0 = 0, 

aF I - 1 (3.26) 
aT] -<=0 - • 

Thus we are allowed to apply the implicit function theorem 
in order to obtain the existence of the function T](A} solution 
of (3.17) in a complex neighborhood of 0 and its analyticity 
atA =0. 

By computing the first term in the Taylor expansion of 
T](A} around ..1,= 0 we get 

T](A} = (m~N + 1 (0}/2)1/211 W 1/2~i~ + 1 II~A + o(A) , 
(3.27) 

which implies 

and 

T]2(A} = (m~N+ 1 (0}/2)11 WI/2~i~+ 1 iliA 2 + 0(..1, 2) 
(3.28) 
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m!N+ 1 (0) E2N + 1 (A) = E 2N + 1 (0) - ----
2 

X (f_+ 0000 I W(x) I [tPiY + 1 (x)] 2 dx y..1. 2 

+ 0(..1. 2). 

In the case ofa gap of the type (N - !)2, E2N (-71'») we have 
the analogous formula given in the statement of the theor­
em. Q.E.D. 

Remark: A similar result can be shown in the case of a 
piecewise continuous periodic potential since also in that 
case the Bloch eigenfunctions can be analytically continued 
in a neighborhood of e = 0, if W has an exponential decay 
and similar formulas can be found for the bound states oc­
curring in the gaps of the spectrum. 
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